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АҢДАТПА 

 

Магистрлік диссертациялық жұмыс таратылған талшықты-оптикалық 
сенсорлардан алынатын сейсмикалық сигналдарды машиналық оқыту əдістері 

негізінде тану жəне өңдеу мəселелерін зерттеуге арналған. 

Эксперименттік бөлімде DAS деректер жинағы қолданылып, 

сигналдарды алдын ала өңдеу кезеңдері жүзеге асырылды. Сигналдарды тану 
жəне классификациялау үшін қадағаланатын машиналық оқыту əдісі 

қолданылды. Модельдің тиімділігі Accuracy, Precision, Recall жəне F1-score 

көрсеткіштері арқылы бағаланды. 
Зерттеу нəтижелері ұсынылған тəсілдің DAS деректеріндегі 

сейсмикалық сигналдарды шуылдан тиімді ажырата алатынын жəне оны жер 

сілкіністерін ерте анықтау мен геофизикалық мониторинг жүйелерінде 

қолдануға болатынын көрсетті. 
 

АННОТАЦИЯ 

 

Магистерская диссертационная работа посвящена исследованию 

методов распознавания и обработки сейсмических сигналов, получаемых с 

распределённых волоконно-оптических сенсоров с применением методов 

машинного обучения. 
В экспериментальной части использован набор данных DAS, выполнены 

этапы предварительной обработки сигналов. Для распознавания и 

классификации сигналов применены методы контролируемого машинного 
обучения. Эффективность модели оценивалась с использованием показателей 

Accuracy, Precision, Recall и F1-score. 

Полученные результаты подтверждают возможность эффективного 

выделения сейсмических сигналов из шума и практическую применимость 
предложенного подхода в системах раннего обнаружения землетрясений и 

геофизического мониторинга. 

 

ANNOTATION 

 

This master’s thesis is devoted to the study of recognition and processing of 

seismic signals acquired from distributed fiber-optic sensing systems using machine 
learning methods. 

In the experimental part, a DAS dataset is used and signal preprocessing 

procedures are performed. Supervised machine learning methods are applied for 

signal recognition and classification. Model performance is evaluated using 
Accuracy, Precision, Recall, and F1-score metrics. 

The results demonstrate that the proposed approach effectively distinguishes 

seismic signals from noise and can be practically applied in early earthquake 
detection systems and geophysical monitoring. 

  



 7 

МАЗМҰНЫ 

      

Кіріспе 8 
1 Принциптері жəне теориялық негіздері 8 

1.1 Талшықты-оптикалық датчиктердің жұмыс принциптері 10 

1.2 Сейсмикалық сигналдың физикалық табиғаты 16 

1.3 Distributed Acoustic Sensing (DAS) технологиясының стандартты 
сейсмикалық деректермен салыстырмалы талдауы 

 
20 

1.4 Машиналық оқытудың теориялық негіздері 26 

1.5 Сейсмикалық сигналдарды машиналық оқыту арқылы өңдеудің 
заманауи тəсілдері  

 
33 

 1 бөлім бойынша қорытынды 39 

2 DAS деректерін алдын ала өңдеу жəне сигналдарды тану 

əдістемесі 

 

40 
2.1 Таратылған талшықты-оптикалық сенсордың (DOFS)  деректер 

жиынтығы 

 

40 

2.2 DAS деректерін алдын ала өңдеу – сүзгілеу 43 
2.3 Сүзгілеу əдістерінің тиімділігін бағалау  49 

2.4 Сигналдарды тану жəне өңдеу үшін машиналық оқыту моделінің 

архитектурасы 

 

51 

 2 бөлім бойынша қорытынды  
3 DAS сенсорынан алынған деректер жинағын алдын ала өңдеу 

жəне машиналық оқыту арқылы зерттеу  нəтижелері 

53 

54 

3.1 Деректерді сүзгілеу нəтижелері 54 
3.2 1D-CNN моделін оқыту жəне нəтижелері 57 

 3 бөлім бойынша қорытынды 59 

Қорытынды 

Пайдаланылған əдебиеттер тізімі 
Қосымша А 

60 

 
62 

66 

 
 

  

 

  



 8 

КІРІСПЕ 

Қазіргі таңда жер сілкіністері адам өміріне, инфрақұрылымға жəне 

экономикалық тұрақтылыққа елеулі қауіп төндіретін ең жойқын табиғи 

апаттардың бірі болып табылады. Жыл сайын əлемнің əртүрлі аймақтарында 
тіркелетін күшті сейсмикалық оқиғалар мыңдаған адам шығынына, тұрғын 

үйлер мен өндірістік нысандардың қирауына, сондай-ақ көлік, энергетика 

жəне байланыс жүйелерінің істен шығуына əкеліп соғады.  Осыған 

байланысты жер сілкіністерін уақтылы анықтау, олардың дамуын бақылау 
жəне ықтимал қауіптерді алдын ала бағалау мəселесі қазіргі ғылым мен 

инженериядағы ең өзекті бағыттардың бірі болып отыр. Осы талаптарға сəйкес 

келетін таралған талшықты-оптикалық сенсорлар (DOFS) талшық бойымен 
деформацияның ең шағын өзгерістерін тіркей отырып, сейсмикалық 

процестерді зерттеу үшін жоғары сезімтал эксперименттік база ұсынады [1,2]. 

Зерттеулер DOFS арқылы тіркелетін микросейсмикалық сигналдарды 

анықтау жəне классификациялау тапсырмаларында терең оқыту əдістерінің, 
əсіресе CNN типті нейрондық желілердің жоғары тиімділігін көрсетеді. CNN 

модельдерін сейсмикалық деректерге қолдану сигналдың маңызды 

ерекшеліктерін басым шудан ажыратып, сейсмикалық оқиғаларды дəл тануға 
мүмкіндік береді [3,4]. Терең оқыту алгоритмдерінің DOFS технологиясымен 

интеграциялануы дəстүрлі алгоритмдерге қарағанда жоғары нəтижелер 

көрсететіні дəлелденген, əсіресе табиғи ортаға тəн күшті шу жағдайларында 

[5]. Сонымен қатар, талшықты-оптикалық технологияның жоғары кеңістіктік 
айқындығы стандартты əдістермен қол жеткізу мүмкін емес деңгейдегі 

детализацияны қамтамасыз етеді, бұл коллектор сипаттамаларын анықтау, 

оқиға орнын локализациялау жəне жер сілкіністерін тіркеу секілді 
қолданбаларда дəлдікті арттыруға мүмкіндік береді [6]. 

Машиналық оқыту алгоритмдері, соның ішінде опорлық векторлар əдісі 

(SVM) жəне терең оқыту архитектуралары, сейсмикалық оқиғаларды 

классификациялау үшін кеңінен қолданылуда. Бірқатар зерттеулерде ML 
модельдерінің өнімділігі дəстүрлі электрондық жүйелермен салыстырылып, 

тиісті дайындықтан кейін талшықты-оптикалық мониторинг жүйелері 

əлдеқайда жоғары классификация дəлдігін көрсете алатыны анықталған [7]. 

Энергия энтропиясы сияқты статистикалық ерекшеліктерді пайдалану ML 
модельдеріне əртүрлі сейсмикалық сигналдарды тиімді ажыратуға мүмкіндік 

береді, бұл геофизикалық мониторинг пен пайдалы қазбаларды барлау 

салаларында деректерді жинау мен талдаудың тиімді стратегияларын 
дамытуға септігін тигізеді [7]. 

DOFS пен машиналық оқытуды біріктіре қолданудың маңыздылығы 

үлкен көлемдегі деректерді өңдеу жəне интерпретациялау мүмкіндігінің 

артуымен айқындалады, ал мұндай деректерді дəстүрлі қолмен өңдеу 
əдістерімен талдау іс жүзінде мүмкін емес [8]. Сейсмикалық мониторингтің 

күрделі талаптарына сай болу үшін жүйелердің дəлдігін, сенімділігін жəне 

жылдамдығын үздіксіз арттыру қажет; осы тұрғыдан алғанда DOFS пен ML 
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интеграциясы сигналдарды автоматты тану, нақты уақыт режимінде шешім 

қабылдауды қолдау мүмкіндіктерін едəуір күшейтеді. Бұл тəсіл табиғи 

апаттарға дайындық, инфрақұрылымды қорғау жəне ресурстарды басқару 
сияқты салаларда айтарлықтай пайда əкеледі [6]. 

Сонымен қатар, көптеген ғылыми зерттеулер ірі жер сілкіністерінің 

алдында амплитудасы төмен, əлсіз жəне қысқа мерзімді дірілдер - форшоктар 

(foreshocks) жиі пайда болатынын дəлелдейді. Мысалы, 2011 жылғы Тохоку 
жер сілкінісіне (М9.0) дейін бірнеше апта бойы жүздеген əлсіз сейсмикалық 

тербелістер тіркелген, ал негізгі дүмпуден екі күн бұрын М7.3 көлеміндегі 

айқын форшок байқалған [9]. Сондай-ақ 2022 жылғы Фукусима маңындағы 
М7.4 жер сілкінісіне дейін бірнеше сағат бұрын М5–6 деңгейіндегі алдын ала 

дірілдер тіркелгені USGS мəліметтерінде көрсетілген. Бұл фактілер жер 

сілкінісінің алдында механикалық тербелістердің əлсіз формалары пайда 

болатынын ғылыми түрде дəлелдейді [10]. 
Жұмыстың мақсаты – таратылған талшықты-оптикалық сенсорлардан 

(DOFS/DAS) алынатын уақыттық сигналдарды автоматты түрде анықтау жəне 

жіктеу үшін машиналық оқыту модельдерінің тиімділігін зерттеу жəне 
салыстырмалы талдау жүргізу. 

Жұмыстың міндеттері: 

- Талшықты-оптикалық сенсорлар жұмысының іргелі негіздерін жəне 

сейсмикалық сигналдарды тану жəне өңдеу үшін қолданылатын Машиналық 
Оқыту əдістерін зерттеу жəне əдебиеттерге шолу жасау;  

- DAS сигналдарын алдын ала өңдеу; 

- DAS сенсорынан алынған деректер жинағын (сигналдарды) 
машиналық оқыту арқылы зерттеу жүргізу. 

Зерттеу объектісі – таратылған талшықты-оптикалық сенсорлар 

арқылы алынатын сейсмикалық сигналдар. 

Зерттеу пәні – DOFS/DAS деректерін машиналық оқыту əдістері 
негізінде тану жəне өңдеу тəсілдері. 

Жұмыстың ғылыми жаңалығы DAS сенсорынан алынатын 

сейсмикалық сигналдарды машиналық оқыту алдында алдын ала сүзгілеудің 
сейсмикалық сигналдарды тану дəлдігін арттыратынын тəжірибелік түрде 

көрсету.  

Жұмыстың практикалық маңызы. Зерттеу нəтижелері жер 

сілкіністерін ерте анықтау жүйелерінде, инженерлік нысандардың 
құрылымдық күйін мониторингілеуде жəне төтенше жағдайлардың алдын алу 

мақсатында қолданылуы мүмкін. 

Магистрлік диссертация 68 беттен, 3 бөлімнен,  2 кестеден,  28 суреттен, 

1 қосымшадан жəне 48 əдеби көзден тұрады. 
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1 Принциптері және теориялық негіздері 

 

1.1 Талшықты-оптикалық датчиктердің жұмыс принциптері 

 

 Талшықты-оптикалық датчиктер оптикалық талшықтар арқылы 

жарықтың таралуы жəне жарықтың қоршаған ортаның өзгеруімен əрекеттесуі 

принципі бойынша жұмыс істейді. Негізгі механизм штамм, температура, 
қысым жəне тербеліс сияқты əртүрлі физикалық параметрлер əсер етуі мүмкін 

жарық сигналдарының модуляциясын қамтиды. Ең көп қолданылатын 

датчиктер Талшықты Брагг Торларына негізделген сенсорлар (FBGs) жəне 
таратылған талшықты-оптикалық сенсорлар болып табылады. 

FBG негізіндегі талшықты-оптикалық сенсорлар жарық толқындарының 

белгілі бір толқын ұзындығын ғана шағылдырып, қалғандарын өткізетін 

арнайы құрылымға негізделген. Бұл құрылым талшық өзегінің сыну 
көрсеткішін белгілі бір аралықпен (периодпен) өзгерту арқылы жасалады. 

Яғни, бір модалы талшық өзегінде жарықты шағылдыратын микроскопиялық 

«айна» қабаттары қалыптасады (1.1-сурет) [11]. 
 

 
 

1.1 - сурет – FBG құрылымының эскизі, оның ішінде кіріс/шығыс спектрлері 

жəне позиция функциясы ретінде негізгі сыну көрсеткіші [11]  

 
Жарық сол жақтан талшық ішіне енген кезде, ол Брэгг торы бар 

аймақтан өтеді. Осы аймақта жарық толқыны тордың əрбір қабатымен өзара 

əсерлесіп, шашырайды. Егер жарықтың толқын ұзындығы Брэгг шартын 

қанағаттандырса, онда əр қабаттан шашыраған толқындар бір-бірімен 
қосылып, күшейеді. Нəтижесінде талшық арқылы кері бағытта шағылған 

спектрлік пик (шегініс толқын ұзындығы) пайда болады. Дəл осы толқын 

ұзындығы Брэгг толқын ұзындығы деп аталады. 
Бұл толқын ұзындығы тордың периодына (Λ) жəне талшық өзегінің 

тиімді сыну көрсеткішіне (𝑛𝑒𝑓𝑓) байланысты болады. Егер жарық Брэгг 

шартын қанағаттандырмаса, онда толқындар бір-бірімен күшеймей, жай ғана 
талшық бойымен өте береді. 
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Брэгг шарты келесі теңдеумен өрнектеледі (1.1-тендеу): 

 
                                                      λ𝐵 = 2𝑛𝑒𝑓𝑓 ;                                                                 (1.1) 

мұндағы: 

λ𝐵 - Брэгг толқын ұзындығы (шағылатын жарықтың орталық толқын 

ұзындығы); 

𝑛𝑒𝑓𝑓 - талшықтың тиімді сыну көрсеткіші; 

Λ - тор периодына тең арақашықтық. 
Осы қасиетке байланысты FBG сенсорлары температура, деформация 

(strain), қысым сияқты сыртқы əсерлерге өте сезімтал. Себебі сыртқы əсерлер 

кезінде сыну көрсеткіші мен тор периоды өзгереді, нəтижесінде шағылған 
жарықтың толқын ұзындығы да өзгеріп, оны өлшеу арқылы физикалық 

шамаларды анықтауға болады [11]. 

DOFS технологиясы классикалық нүктелік сейсмикалық станциялармен 

салыстырғанда арзан, сенімді жəне кең аумақты қамтитын мониторинг 
жүйесін құруға мүмкіндік береді. DOFS жүйесінің жұмыс істеу принципі 

жарықтың талшық ішінде таралу кезіндегі шашырау құбылыстарына 

негізделеді. Негізгі үш типті шашырау – Rayleigh, Brillouin жəне Raman 
эффектілері – əртүрлі физикалық параметрлерді (деформация, температура, 

акустикалық тербеліс) өлшеуге мүмкіндік береді [12]. Rayleigh шашырауы 

жарық толқынының кері бағытта шағылысуы арқылы микро-деформациялар 

мен тербелістерді анықтауға мүмкіндік берсе, Brillouin шашырауы 
температура мен созылуды өлшеуде тиімді, ал Raman шашырауы көбінесе 

температураны тіркеу үшін қолданылады [12,13]. Осы принциптерге сəйкес 

DOFS жүйелері екі негізгі түрге бөлінеді: DAS (Distributed Acoustic Sensing) 
жəне DTS (Distributed Temperature Sensing). 

DAS (Distributed Acoustic Sensing) əдісі жер бетімен немесе жер астына 

көміліп төселген ұзын талшықты-оптикалық кабельді датчик ретінде 

пайдаланады. Бұл кабельді шартты түрде бойына сансыз көп «микрофондары» 
бар сызықтық сенсор ретінде елестетуге болады. Кабель арнайы құрылғы — 

интеррогаторға (лазерлік бақылау жүйесі) қосылады. Интеррогатор талшыққа 

белгілі бір жиілікте қысқа жарық импульстарын жібереді. Талшық ішіндегі 
микроскопиялық құрылымдық ауытқулар мен кішкене ақаулар жарық 

импульсының бір бөлігін кері шашыратады. Бұл құбылыс Рэлеевтік кері 

шашырау (Rayleigh backscattering) деп аталады. Осы шашыраған жарық 

толқындары бастапқы көзге - интеррогаторға қайта оралады. Интеррогатор 
бұл сигналдарды қабылдап, талдап, кабельдің əрбір нүктесінде не болып 

жатқанын анықтауға мүмкіндік береді. Жер сілкінісі сияқты сейсмикалық 

толқындар талшыққа жеткен кезде, олар кабель бойымен механикалық 

деформация тудырады (1.2-сурет) [14]. 
Нəтижесінде талшықтың сыну көрсеткіші мен оптикалық ұзындығы 

өзгеріп, Рэлеевтік кері шашырау сигналдарының фазасы ығысады. 

Интеррогатор осы фазалық өзгерістерді өлшеу арқылы деформацияның орын 
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алған нүктесін дəл анықтай алады Қайта оралған сигналдардың амплитудасы, 

жиілігі жəне келу уақыты сияқты параметрлерін талдау арқылы біз кабельдің 

қай бөлігінде механикалық əсер болғанын анықтаймыз. Осы ақпарат негізінде 
сейсмикалық толқындардың параметрлерін (амплитуда, жылдамдық, пайда 

болу уақыты) анықтап, тіпті жер сілкінісінің эпицентрін есептеуге болады. 

Егер осындай бірнеше кабельдер немесе ұзын кабельдің бірнеше аймағы 

қолданылса, сейсмикалық оқиғаның орналасқан жерін нақты анықтауға 
болады. 

 

 
 

1.2 - сурет – DAS (Distributed Acoustic Sensing) технологиясының жұмыс 

істеу принципі 
 

 DAS арқылы тіркелетін сигналдар табиғатына қарай əртүрлі формада, 

жиілікте жəне ұзақтығында болуы мүмкін. Сигналдың табиғатын анықтау 
үшін оның жиілік диапазоны, дауыс ұзақтығы, амплитудасы, сондай-ақ 

уақыттық өзгеріс ерекшеліктері талданады. Мысалы, теңіз түбіне төселген 

талшықты-оптикалық кабель арқылы киттің дыбыстық дабылы (blue whale 

call) шамамен 10–40 Гц жиілік диапазонында болады жəне 10–30 секундқа 
дейін созылады. Ал сейсмикалық толқындар əлдеқайда кең жиілік диапазонын 

қамтып, белгілі бір физикалық заңдылықтармен таралады. 

DAS технологиясы тек сейсмикалық толқындарды ғана емес, сонымен 

қатар мұнай-газ бұрғылау жұмыстарын, кемелер қозғалысын, теңіз 
фаунасының акустикалық сигналдарын, мұздықтардың жылжу динамикасын, 

тіпті инфрақұрылымдық дірілдерді де анықтай алады [14]. Сол арқылы DAS 
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жүйесі қоршаған ортаны мониторингілеу, геофизикалық процестерді бақылау 

жəне табиғи апаттарды ерте анықтау салаларында кеңінен қолданылуда. 

1.3-суреттегі карта телекоммуникациялық жəне инфрақұрылымдық 
талшықты-оптикалық желілердің DAS технологиясын қолдану арқылы 

əлемнің əртүрлі аймақтарында кеңінен пайдаланылып отырғанын көрсетеді. 

Көрсетілген инсталляциялар жүздеген жəне мыңдаған километрге дейін 

созылатын оптикалық талшықтарда жүзеге асырылған жəне мұнай-газ 
инфрақұрылымы, көлік жүйелері, телекоммуникация, сондай-ақ қауіпсіздік 

жəне мониторинг салаларын қамтиды. Мұндай ауқымды желілердің болуы 

DAS технологиясын тек жергілікті емес, аймақтық жəне тіпті жаһандық 
деңгейде сейсмикалық жəне геодинамикалық құбылыстарды бақылау үшін 

қолдануға мүмкіндік береді. Осы карта DAS негізіндегі мониторинг 

жүйелерінің кең таралғанын жəне олардың сейсмологияда, соның ішінде жер 

сілкіністерін тіркеу мен талдауда, перспективалы құрал екенін дəлелдейді. 
 

 
 

1.3 - сурет – DAS технологиясы қолданылатын инфрақұрылымдық 

талшықты-оптикалық желілердің жаһандық таралуы 
 

 Талшықты-оптикалық үлестірілген температураны зондтау (DTS) -бұл 

жоғары кеңістіктік жəне уақыттық ажыратымдылықты ұсына отырып, 
талшықты-оптикалық кабель бойымен температураны ұзақ қашықтықта 

өлшеуге мүмкіндік беретін технология. DTS-тің жұмыс принципі, ең алдымен, 

оптикалық талшықтар арқылы берілетін лазерлік импульстің нəтижесінде 

Жарықтың шашырауын, атап айтқанда Раман шашырауын талдауды қамтиды 
[15,16]. DTS-тегі соңғы жетістіктер кеңістіктік ажыратымдылығы 0,125 м-ге 

дейінгі дəлдікті өлшеуге жəне температураның 0,01 °C-қа дейінгі 

ауытқуларын анықтауға мүмкіндік берді [17]. Бұл жоғары дəлдік пен 
сенімділік DTS-ті энергетика, құрылыс, қоршаған ортаны бақылау жəне 
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мұнай-газ салаларын қоса алғанда, əртүрлі салаларда баға жетпес құралға 

айналдырады. 

 Раман эффектісін қолданатын талшық бойымен температураны өлшеу 
технологиясы (DTS – Distributed Temperature Sensing) алғаш рет 1984 жылы 

ұсынылған. Бұл əдісте температураны анықтау үшін жарық импульстары 

талшық бойымен таралып, Стокс жəне анти-Стокс Раман шашырау 

сигналдарының қарқындылығы салыстырылады. Себебі анти-Стокс 
сигналдарының амплитудасы қоршаған ортаның температурасына қатты 

тəуелді болады. Дегенмен, бұл сигналдар өте əлсіз (сорғы лазер қуатынан 

шамамен 60-70 дБ төмен), сондықтан бастапқы кезде Раманға негізделген DTS 
жүйелерін қолдану техникалық тұрғыдан қиын болды. 

Алайда, уақыт өте келе жоғары қуатты лазерлердің, эрбиймен 

легирленген талшықты күшейткіштердің (EDFA), жоғары сезімтал APD 

фотодетекторлардың жəне сигналды тиімді өңдеу алгоритмдерінің (мысалы, 
орташа мəнге келтіру, толқындық деноизация) дамуы Раман сигналдарының 

сапасын айтарлықтай жақсартты. Соның нəтижесінде DTS жүйелерінің 

сигнал/шу қатынасы артты жəне өлшеу дəлдігі мен кеңістіктік рұқсаттылығы 
жоғарылады. 

Раманға негізделген DTS жүйесінің типтік эксперименттік құрылымы 

1.4(a)-суретте көрсетілген. Жүйеде үздіксіз (CW) лазерлік жарық AOM 

(Acousto-Optic Modulator) көмегімен оптикалық импульстарға түрлендіріледі. 
Бұл импульстар EDFA арқылы күшейтіліп, одан кейін 3×1 толқын ұзындығын 

бөлу/біріктіру құрылғысына (MUX/DEMUX) жіберіледі. MUX/DEMUX 

құрылғысының 1, 2 жəне 3 порттары сəйкесінше сорғы лазерінің толқын 
ұзындығына, Стокс жəне анти-Стокс Раман сигналдарына арналған. Төртінші 

порт арқылы осы үш сигнал бір əрі ортақ талшыққа беріледі. Күшейтілген 

оптикалық импульстар MMF (multimode fiber) бойымен таралған кезде, Раман 

шашырауынан пайда болған Стокс жəне анти-Стокс сигналдары кері бағытта 
шағылысып қайтады. Бұл кері шашыраған сигналдар MUX/DEMUX арқылы 

толқын ұзындығы бойынша бөлініп, əрқайсысы жеке APD детекторында 

қабылданып, кейін деректер жинау жүйесіне (DAQ) тіркеледі. 
1.4(b) жəне 1.4(c) суреттерінде бөлме температурасында орналасқан 

стандартты 50/125 µm MMF талшығында өлшенген анти-Стокс жəне Стокс 

сигналдарының үлгілік графиктері көрсетілген [16]. 
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1.4 - сурет – (а) Раман негізіндегі талшықты–оптикалық DTS Жүйесін 

Эксперименттік орнату. Бөлме температурасында жазылған Анти–Стокс (b) 
жəне Стокс (c) Раман сигналының мысалдары [16]. 

 
Осы үш сенсор – FBG, DAS жəне DTS – талшықты-оптикалық сезу 

технологияларының негізгі өкілдері болып табылады. Олардың əрқайсысы 

талшық бойымен əртүрлі физикалық параметрлерді (температура, деформация 
немесе сейсмикалық тербеліс) өлшеуге арналғанымен, сейсмикалық 

сигналдарды анықтау қабілеті жағынан айтарлықтай ерекшеленеді. Төменде 

сейсмикалық сигналдарды анықтауға арналған сенсорлардың салыстырмалы 
техникалық кестесі көрсетілген (1.1 - кесте). 

 

Кесте 1.1 – Cейсмикалық сигналдарды анықтауға арналған 

сенсорлардың салыстыру 
 

Сенсор 

түрі 

Өлшейтін 

параметрі 

Жиілік 

диапазоны 

(Гц) 

Сейсмикалық 

сигналды анықтау 

қабілеті 

Ерекшелігі 

DTS Температура 0 Гц Қабілеті жоқ (тек 

статикалық 

температураны 

өлшейді) 

Сейсмикаға арналмаған 
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1.1 кестенің жалғасы 
FBG Нүкелік strain 

(деформация), 

температура 

0–200 Гц Шектеулі (тек белгілі 

бір нүктелерде) 

Дəл, бірақ дискретті 

(distributed емес) 

DAS Акустика, 

вибрация, 

strain 

0.1–5000 Гц Өте жоғары (үздіксіз, 

таратылған сенсор) 

10 км–100 км бойында 

сейсмикалық 

толқындарды анықтайды 

  

DTS жүйесі тек температураның статикалық өзгерістерін тіркейді жəне 

динамикалық сейсмикалық толқындарды өлшей алмайды. FBG сенсорлары 
деформация мен температураны жоғары дəлдікпен анықтайды, бірақ олар 

нүктелік (discrete) сенсор болғандықтан, кеңістікте таралатын сейсмикалық 

толқындарды толық қамти алмайды. Ал DAS технологиясы Rayleigh 
шашырауына негізделіп, талшық бойымен үздіксіз (distributed) жəне нақты 

уақыт режимінде сейсмикалық, акустикалық жəне вибрациялық сигналдарды 

тіркей алады. Сондықтан DAS жүйесі сейсмикалық мониторинг пен жер 

сілкінісін ерте анықтау үшін ең қолайлы сенсор болып саналады. 
 

 

 1.2 Сейсмикалық сигналдың физикалық табиғаты 

 

Сейсмикалық сигналдар табиғи ортада пайда болатын механикалық 

тербелістер мен толқындық процестердің нəтижесі болып табылады. Олар 

Жер қабаттарында энергияның кенет босатылуынан немесе жасанды 
техногендік əрекеттерден туындайтын серпімді толқындар түрінде таралады. 

Механикалық тербеліс -  дененің тепе-теңдік қалпынан ауытқып, уақыт 

бойынша қайталанып отыратын қозғалысы, ал сейсмикалық толқындар - осы 
тербелістердің кеңістікте таралуы [18]. 

Сейсмикалық тербелістер шығу табиғатына қарай екіге бөлінеді: 

1) табиғи (жер сілкінісі, вулкандық белсенділік, жер қыртысының 

қозғалысы) жəне 
2) жасанды немесе техногендік (жарылыс, бұрғылау, көлік 

қозғалысы, инфрақұрылымдық вибрация). 

Табиғи сейсмикалық тербелістер негізінен жер қыртысындағы 
тектоникалық плиталардың қозғалысы, мантиядағы қысым өзгерістері немесе 

жер асты жыныстарының жарылуы нəтижесінде пайда болады [19]. Осындай 

процестер кезінде үлкен көлемдегі механикалық энергия босап, кеңістікте 

серпімді толқын түрінде таралады. Бұл толқындардың негізгі жиілік 
диапазоны 0.1-100 Гц аралығында болады жəне олар Жердің ішкі құрылымын 

зерттеу, жер сілкінісін ерте анықтау жəне сейсмикалық қауіпсіздікті бағалау 

үшін қолданылады [20]. 

Жасанды сейсмикалық сигналдар көлік қозғалысы, өндірістік діріл, 
бұрғылау станоктары немесе мұнай-газ индустриясындағы сейсмикалық 

барлау кезінде пайда болады. Мұндай толқындардың жиілік диапазоны 

табиғиға қарағанда əлдеқайда кең - 10 Гц-тен 2000 Гц-ке дейін болуы мүмкін. 
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Техногендік тербелістер көбіне қысқа қашықтықта таралады жəне олардың 

амплитудасы табиғи сейсмикалық толқындарға қарағанда төмен. Соған 

қарамастан, олар құрылыс, көпірлер, тоннельдер жəне инфрақұрылымдық 
нысандардың дірілге тұрақтылығын бағалауда аса маңызды. 

Сейсмикалық сигналдардың негізгі физикалық қасиеттеріне амплитуда 

(A), жиілік (f), фаза (ϕ), энергия (E) жəне таралу жылдамдығы (v) жатады. 

Толқынның кеңістікте таралуы төмендегі теңдеумен сипатталады: 
 

                                             x(𝑡) = A sin(ω𝑡 + φ) ;                    (1.2) 

 

мұндағы ω = 2π𝑓 - бұрыштық жиілік. 

Ал толқынның жылдамдығы келесі формуламен анықталады: 

 

                                                           v = λ ⋅ 𝑓 ;                                (1.3) 

 

мұндағы λ— толқын ұзындығы. 

Сонымен, сейсмикалық сигнал — бұл табиғи немесе жасанды жолмен 

пайда болатын механикалық тербелістің кеңістікте таралатын серпімді 

толқындық формасы. Оның жиілік, амплитуда жəне уақыттық параметрлерін 
талдау арқылы Жер қойнауындағы процестерді немесе жер бетінде орналасқан 

объектілердің қозғалысын анықтауға болады. Қазіргі таңда сейсмикалық 

сигналдарды тіркеу үшін классикалық геофондармен қатар DAS жүйесі 

сияқты талшықты-оптикалық таратылған сенсорлар кеңінен қолданылуда [20]. 
Жер сілкінісі болған кезде босап шыққан энергия жер қойнауы арқылы 

толқын түрінде таралады. Бұл сейсмикалық толқындар жерді қатты шайқап, 

кей жағдайларда саз, құм сияқты жұмсақ жыныстардың қоймалжың болып, 
сұйықтыққа ұқсап кетуіне (ликвация) себеп болады. Сейсмикалық деген атау 

гректің seismos – «жер сілкінісі» деген сөзінен шыққан. Сейсмикалық 

толқындар көбінесе литосфералық плиталардың қозғалысынан түзіледі, 

алайда оларды жанартау атқылауы, көшкіндер немесе жасанды жарылыстар да 
тудыруы мүмкін. Бұл толқындардың қасиеттерін зерттейтін ғалымдарды 

сейсмологтар деп атайды. Олар сейсмограф құралдарының көмегімен 

толқындардың Жердің əртүрлі қабаттары арқылы өту уақытын тіркейді. 
Толқындар əртүрлі тығыздық пен серпімділікке ие жыныстарға тап болғанда, 

олар шағылысып немесе сынуға ұшырайды. Сейсмикалық толқындардың 

пайда болу механизмі, олардың ошақтан қалай таралатыны 1.5 - суретте 

көрсетілген. 
Толқындардың осындай мінез-құлқына қарап, сейсмологтар олардың 

қандай жыныстар арқылы өткенін анықтай алады. Бұл ақпарат Жердің ішкі 

құрылысының сызбасын жасауға жəне жарықшақ жазықтарын, сондай-ақ 
оларға əсер ететін кернеулер мен деформацияларды анықтауға мүмкіндік 

береді. Сейсмикалық толқындардың қасиеттерін тек ірі масштабта ғана емес, 

шағын аумақтарда да қолдануға болады. Мысалы, арнайы жарылыстар немесе 



 18 

дірілдеткіш құрылғылар арқылы жасанды толқындар тудырып, мұнай мен газ 

қорларын іздеуде қолданады [21]. 
 

 
 

1.5 - сурет – Сейсмикалық толқындардың пайда болу механизмі [21] 

 
 Сейсмикалық толқындар үш негізгі түрге бөлінеді: P-толқындар, S-

толқындар жəне беткі толқындар. Олардың ішінде P жəне S толқындары жер 

қыртысының ішкі қабаттары арқылы таралатындықтан, денелік толқындар 
(body waves) деп аталады. 

P-толқындар немесе алғашқы (қысу) толқындар – жылдамдығы ең 

жоғары сейсмикалық толқындар. Жер сілкінісі кезінде сейсмограф ең алдымен 

дəл осы толқындарды тіркейді. Ауада олар дыбыс толқыны сияқты шамамен 
330 м/с жылдамдықпен таралса, ал гранит сияқты қатты жыныстарда 

жылдамдығы 5000 м/с-қа дейін жетеді. Бұл толқындар ортаны кезекпен сығып 

жəне созу арқылы тарайды, яғни бөлшектердің тербелісі толқын қозғалысына 
параллель бағытта жүреді. Бұны созылған серіппені алға-артқа 

жылжытқандағы қозғалысқа ұқсатуға болады. 

S-толқындар немесе екінші (қию, сілкіну) толқындар P-толқындарға 

қарағанда баяу қозғалады. Бұл толқындардың ерекшелігі – бөлшектердің 
қозғалысы толқын таралу бағытына перпендикуляр бағытта жүреді. Яғни, 

олар көлденең толқындар (transverse waves) болып табылады. Мұны түсіну 

үшін созылған серіппенің бір бөлігін жоғары көтеріп, қайта түсірсеңіз, 

көлденең толқын түзіліп, серіппенің бойымен таралады - бұл S-толқындардың 
қозғалысына ұқсас. S-толқындар тек қатты заттар арқылы ғана таралады, 

сондықтан олар Жердің ішкі құрылымын анықтауда маңызды рөл атқарады. S 

толқындары ауа немесе су арқылы өте алмайды, бірақ амплитудасы үлкен 
болғандықтан Р - толқындарына қарағанда жойқын [22]. 

Беткі толқындар Жердің ең жоғарғы қабаты бойымен таралып, су 

бетіндегі толқындарға ұқсайды. Олар көбінесе жер сілкінісінің ошағы жер 

бетіне жақын болған жағдайда түзіледі. Жылдамдығы S-толқындарға 
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қарағанда төмен болғанымен, амплитудасы əлдеқайда үлкен, сондықтан олар 

ең қауіпті жəне бүлдіргіш сейсмикалық толқындар болып саналады. Беткі 

толқындар екі түрге бөлінеді: 
1) Рэйлей толқындары (Rayleigh waves) жер бетінде судағы толқын 

секілді домалақ қозғалыс жасайды. Күшті жер сілкінісі кезінде ашық 

алаңдарда (мысалы, автотұрақтарда) автокөліктердің жоғары-төмен 

шайқалғанын байқаған куəгерлер болған. 
2) Лав толқындары (Love waves) жерді көлденең бағытта, яғни оңға-

солға қарай сілкіндіреді. Бұл толқындар Рэйлей толқындарынан аздап жылдам 

жəне вертикалды қозғалыс тудырмайды. Көлденең ығыстыру əсерінен 
ғимараттар мен құрылыстарға үлкен зиян келтіреді. Сейсмикалық 

толқындардың негізгі түрлерінің жер арқылы таралу механизмдері 1.6 – 

суретте көрсетілген. 

Сейсмикалық толқындардың əртүрлі типтерін талдау арқылы ғалымдар 
Жердің ішкі құрылымын зерттейді. Р жəне S толқындарының станцияға жету 

уақытын салыстыру арқылы жер сілкінісінің қаншалықты қашықтықта 

болғанын анықтауға болады. Егер сейсмографтар S-толқындарын тіркей 
алатындай жақын болмаса, онда əртүрлі нүктелерден тіркелген P-

толқындардың мəліметтері компьютерлік модельдер арқылы өңделіп, жер 

сілкінісінің шамамен орналасқан орны есептеледі [21]. 
 

 
 

1.6 - сурет – Сейсмикалық толқындардың негізгі түрлерінің (P-толқын, S-
толқын, Rayleigh толқыны, Love толқыны) жер арқылы таралу механизмдері 

[21] 
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1.3 Distributed Acoustic Sensing (DAS) технологиясының стандартты 

сейсмикалық деректермен салыстырмалы талдауы 

 

Стандартты сейсмикалық деректер деп біз əдетте сейсмометрлер немесе 

геофондар арқылы тіркелген ақпаратты атаймыз. Əрине, бұл құрылғылардың 

əрқайсысының өзіндік ерекшеліктері бар, бірақ біздің мақсатымыз үшін 

олардың екеуі де жер бетінің тербеліс жылдамдығын нақты бір нүктеде 
өлшейтін аспаптар екенін түсіну жеткілікті. Мұны есте сақтау маңызды, 

өйткені классикалық сейсмикалық талдау əдістерінің басым бөлігі нүктелік 

өлшеулерге негізделген. 
Ал DAS технологиясында жағдай басқаша - онда өлшеу бір нүктеде 

емес, үздіксіз талшық бойымен таралған кеңістіктік ұзындықта орындалады. 

Механикалық деформация (strain) - бұл зат бөлшектерінің бастапқы күйінен 

ығысуымен (displacement) байланысты физикалық шама. Ал деформация 
жылдамдығы (strain rate) мен жылдамдық (velocity) арасындағы байланыс - 

кеңістіктік градиент арқылы сипатталады. Математикалық түрде ол келесідей 

жазылады [23]: 
 

                                                       ε𝑧 =  
𝑑𝑢𝑧

𝑑𝑧
  ;                                                      (1.4) 

 

мұндағы 𝑢𝑧 = жылдамдық немесе орын ауыстыру; ε𝑧 = z позициясындағы 
деформация. 

 Басқаша айтқанда, DAS жүйесі арқылы өлшенетін деформация немесе 

деформация жылдамдығы — дəстүрлі сейсмикалық аспаптар (геофон немесе 
сейсмометр) тіркейтін орын ауыстыру (displacement) немесе жылдамдықтың 

(velocity) кеңістіктік градиентімен тікелей байланысты. Мұқият қараған адам 

байқайтыны — бұл түсіндіруде мен деформация тензорының тек бір ғана 

компонентін келтірдім. Алайда, жалпы жағдайда талдау дұрыс болуы үшін 
деформация тензоры талшықтың бойымен бағыттас етіп айналдырылады. 

Осы тұжырымды алдыңғы бөлімде келтірілген усреднение теңдеуімен 

біріктіре отырып, датчиктің ұзындығының кез келген нүктесінде орналасқан 
жылдамдық немесе орын ауыстыру мəндерінің негізінде DAS арқылы 

өлшенетін деформация немесе деформация жылдамдығының жалпыланған 

теңдеуін алуға болады: 

 

                                      ε′(𝑟) =
1

𝐿𝑔
[𝑢 (𝑟 +

𝐿𝑔

2
) − 𝑢 (𝑟 −

𝐿𝑔

2
)];                             (1.5) 

 

мұндағы       r - талшық бойымен қашықтық, ε𝑧 - z позициясындағы штамм, 

𝐿𝑔 - өлшеуіштің ұзындығы 

 Жоғарыда берілген теңдеу негізінде, DAS жүйесі өлшейтін деформация 

(strain) немесе деформация жылдамдығы (strain rate) – датчиктің екі шетінде 
орналасқан жылдамдық немесе орын ауыстыру датчиктерінің мəндерінің 
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айырмасын, талшықтың ұзындығына бөлу арқылы алынады дегенді білдіреді. 

Осы идеяны дамыту арқылы DAS деректерін симуляциялауға мүмкіндік 

туады. Ол үшін талшықтың екі шетіне дəстүрлі сейсмикалық датчиктерді 
(мысалы, геофон немесе сейсмометр) қойып, олардың сигналдарын салыстыру 

жеткілікті. 

Тағы бір маңызды тұсы - DAS деректерін талдауда жиі біз датчиктің 

ортасындағы мəнге сүйенеміз, бірақ іс жүзінде жүйенің шығу сигналы 
талшықтың екі шетінде болып жатқан процестерге тəуелді. Сонымен қатар, 

бұл теңдеу DAS технологиясындағы сезімталдықтың (sensitivity) бұрыштық 

тəуелділігін түсіндіруге негіз береді. Бұл тəуелділік өте жалпы сипатта: ол 
толқын түріне (бойлық, көлденең жəне т.б.) байланысты болжамдарды қажет 

етпейді. Формула талшық түзу бағытталған деп есептейді, дегенмен аз ғана 

өзгерістер енгізу арқылы оны иілген немесе қисық талшықтарға да қолдануға 

болады. Қорытындылай келе, бұл теңдеу DAS технологиясын əрі қарай нақты 
жағдайлар үшін талдауға жəне модельдеуге жақсы теориялық негіз береді. 

DAS деректерін нүктелік сенсордың (геофон немесе сейсмометр) 

деректеріне түрлендіру теориялық тұрғыда мүмкін, жəне мұндай əрекеттер 
DAS пен дəстүрлі сейсмикалық датчиктердің сигналдарын салыстыру 

мақсатында бірнеше зерттеушілер тарапынан жүзеге асырылған [24]. Алайда, 

жоғарыда келтірілген математикалық өрнек мұндай түрлендіруді кейбір 

жорамалдарсыз орындау мүмкін еместігін көрсетеді. 
Бұл мəселені түсіндіру үшін, талшықтың екі шетіндегі геофонның жауап 

сигналы DAS арқылы алынған деформациялық өлшемдермен математикалық 

байланыста қарастырылады. Мұндай байланыс сызықтық инверсиялық есеп 
(linear inverse problem) ретінде сипатталады жəне оны матрицалық түрде 

көрсетуге болады. Жалпы түрде, DAS өлшемдері сол жақта орналасып, ал оң 

жақтағы вектор талшықтың ұштарында тіркелуі мүмкін орын ауыстыру 

немесе жылдамдық мəндерін білдіреді. Осы екі жақты байланыстыратын 
матрица – айырмалар матрицасы (difference matrix) болып табылады, ол 

кеңістіктік градиентті есептеуге негізделген. Сол жақтағы вектор DAS арқылы 

өлшенген деректерді білдіреді, ал оң жақтағы вектор талшықтың ұштарында 
орналасқан нүктелік датчиктердегі ықтимал орын ауыстыру немесе 

жылдамдық мəндерін көрсетеді. Бұл шамалар айырмалар матрицасы 

(differencing matrix) арқылы өзара байланысады. Алайда, осы оң жақтағы 

векторды анықтау үшін айырмалар матрицасынан алынған ішкі көбейтінді 
матрицасын (inner product matrix) инверсиялау қажет. Бұл матрица жеткіліксіз 

рангке ие, яғни оның кем дегенде бір нөлдік меншікті мəні (eigenvalue) болады. 

Мұндай жағдай модельдер кеңістігі деректер кеңістігінен үлкен екенін, 

басқаша айтқанда, жылдамдық немесе орын ауыстыру сигналдарының кейбір 
компоненттері DAS арқылы тіркелмейтінін білдіреді. 

Мұндай сигналдардың қарапайым мысалы - DC-shift, яғни тұрақты 

жылдамдық немесе тұрақты орын ауыстыру. Теориялық тұрғыда мұндай 
сигналды нүктелік сенсор тіркей алады (арнайы жабдық арқылы), алайда DAS 

жүйесі мұндай өзгерісті анықтай алмайды, себебі DAS тек кеңістіктік өзгерісті 



 22 

(градиентті) өлшейді. Дегенмен, геофизикалық зерттеулерде бізге қажет 

сигналдардың көпшілігі дəл осы тіркеле алмайтын компоненттерге жатпайды. 

Сондықтан мұндай дұрыс қойылмаған инверсиялық есептерді (ill-posed inverse 
problems) шешу үшін SVD (singular value decomposition), Tikhonov 

regularization немесе қосымша шектеулер (constraints) сияқты математикалық 

əдістер қолданылады. Осы тəсілдердің көмегімен DAS деректерінен нүктелік 

датчиктің ықтимал жауап сигналын қалпына келтіруге болады. Бірақ бұл 
əдістің математикалық тұрғыда толық емес екенін естен шығармаған жөн. 

Практикалық тұрғыда DAS пен геофон немесе сейсмометр деректерін 

тиімді салыстырудың шынайырақ тəсілі — кері емес, тура есепті шешу, яғни 
нүктелік жылдамдық немесе орын ауыстыру деректері негізінде DAS 

сигналының моделін есептеу. Бұл əдіс салыстыруды дəлірек жəне физикалық 

тұрғыдан негізделген етеді. 

 
1.3.1 DAS жауаптарын алу 

 

Жоғарыда жүргізілген талдауға сүйене отырып, енді біз DAS жүйесінің 
P жəне S толқындарына жауап қайтару ерекшеліктерін қарастырамыз. Бұл 

талдау барысында DAS технологиясына тəн екі эмпирикалық тұжырымды 

(DAS’isms) математикалық тұрғыдан дəлелдейміз: 

- DAS жүйесінің P-толқынға сезімталдығы түсу бұрышының 
косинусының квадратына тəуелді; 

- S-толқынға сезімталдығы түсу бұрышының екі еселенген мəнінің 

синусына тəуелді. 
Мұндағы түсу бұрышы - толқынның таралу бағытына перпендикуляр 

(нормаль) мен талшықтың бағыты арасындағы бұрыш. Шындығында, бұл 

тұжырымдар тек жуықталған түрдегі сипаттама болып табылады. DAS 

талшықтарының нақты жауабы тек бұрышқа ғана емес, сонымен қатар 
толқынның жиілігіне де тəуелді жəне оның схемасы 1.7 – суретте көрсетілген 

[23]. 

 
 

 
 

1.7 - сурет – DAS технологиясының толқын сезімталдығының бұрышқа 

тəуелділік схемасы 
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 Р-толқын жағдайындағы DAS жауабы. Жоғарыда келтірілген 

туындыларды жəне жазықтық инцидентінің формуласын Қолдану Р-
толқынның орын ауыстыруы: 

 

𝑢𝑟
𝑝(𝑟) = cos(θ)  𝐴𝑝(𝑟) 𝑒−𝑖ω𝑇(𝑟) ;                                 (1.6) 

 

мұндағы P - толқыннан туындайтын орын ауыстыру, 𝜃 - толқынның түсу 

бұрышы, 𝐴𝑝(𝑟) - P-толқын амплитудасы, 𝜔 - бұрыштық жиілік, 𝑇(𝑟) - 

толқынның келу уақыты, 𝑣 - толқын таралу жылдамдығы.    
Берілген өрнектегі жақша ішіндегі мүше DAS жүйесінің геофонға 

қарағанда кеңістіктік жəне жиіліктік сүзгі рөлін атқаратынын білдіреді. 

Геофонда сигнал тек түсу бұрышының косинусы мен амплитуданың 
көбейтіндісі түрінде қабылданады, ал DAS жүйесінде одан кейінгі қосымша 

мүшелер кеңістіктік-жиіліктік сүзгі ретінде əрекет етіп, сигналдың пішінін 

өзгертеді. Бұл сүзгілеу процесі толқынның талшыққа келу бұрышына жəне 

оның жиіліктік спектріне тəуелді. Сондықтан DAS талшығы арқылы тіркелген 
сигналдың нақты формасы толқынның жиілігі мен түсу бұрышының 

функциясы болып табылады. Осы тəуелділік негізінде жазық толқын үшін 

DAS жүйесінің амплитудалық жауап спектрін жиілік пен түсу бұрышының 
функциясы ретінде есептеуге болады (1.8 - сурет). 

 
 

 
 

1.8 - сурет – Жиілік пен түсу бұрышының функциясы ретінде P-толқынының 

түсетін жазықтығына DAS талшығының амплитудалық жауап спектрі 
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 Жоғарыдағы суретті құрастыру барысында өлшеу ұзындығы (gauge 

length) 10 метр жəне P-толқынның таралу жылдамдығы 2500 м/с деп алынды. 

Графиктен байқалатыны - егер толқын талшыққа 90° бұрышпен, яғни 
перпендикуляр бағытта келсе, DAS талшығының жауабы нөлге жуықтайды. 

Керісінше, ең жоғары сезімталдық толқын талшық бойымен параллель (0° 

немесе 180° бұрышпен) таралған жағдайда байқалады Сонымен қатар, жиілік 

пен толқын санының əсері де анық көрінеді: төмен жиілікті сигналдар 
əлсірейді, себебі талшықтың екі ұшындағы сигналдар арасындағы 

айырмашылық аз болады. Бұл DAS жүйесінің кеңістіктік сүзгі ретіндегі 

табиғатын көрсетеді. Егер осы графиктен жиілік тұрақты болған жағдайда 
көлденең қима алсақ, нəтижесінде алынған функция түсу бұрышының 

косинусының квадратына пропорционал болады. Бұл - DAS технологиясына 

тəн бірінші эмпирикалық тұжырымның (first DAS’ism) математикалық негізін 

құрайды. 
S - толқын жағдайындағы DAS жауабы. Дəл осындай тəсілді S-толқын 

үшін де қолдануға болады. Алайда бұл жағдайда, талшықтың жауабын 

анықтау үшін толқынның орын ауыстыру немесе жылдамдық векторы 
талшықтың бағытына проекциялануы керек. Яғни, S-толқынның бастапқы 

векторлық табиғатын ескере отырып, оның талшық бойындағы компонентін 

ғана есепке аламыз. Нəтижесінде алынған өрнек DAS талшығының S-

толқынға бұрыштық сезімталдығының негізін құрайды:  
 

                                     𝑢𝑟
𝑠(𝑟) = − sin(θ) 𝐴𝑠(𝑟) 𝑒−𝑖ω𝑇𝑠(𝑟);                                  (1.7) 

 

Шын мəнінде, DAS жүйесінің жауап сүзгісі бұрынғы жағдаймен бірдей 
болып қалады. Бұл орынды, себебі талшықтың геометриялық орналасуы 

өзгерген жоқ. Айырмашылық тек S-толқынның бастапқы орын ауыстыру 

немесе жылдамдық сипаттамасына қатысты бастапқы мүшелерде ғана болады. 
Осы негізде жиілік пен талшық бойына қатысты көлденең бағыттағы (incident 

cosine) бұрыштық тəуелділіктің функциясы ретінде амплитудалық жауап 

есептелгенде, төменде көрсетілген спектр алынады (1.9 - сурет). 
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1.9 - сурет – Жиілік пен түсу бұрышының функциясы ретінде S-толқынының 

түсетін жазықтығына DAS талшығының амплитудалық жауап спектрі 

 
 Бұл есепте бұрынғыдай өлшеу ұзындығы (gauge length) 10 метр деп 

алынды, бірақ толқын жылдамдығы нақтырақ мəнді көрсету үшін P-

толқынның орнына S-толқынға тəн 1560 м/с жылдамдық пайдаланылды. S-
толқын жағдайында, P-толқыннан айырмашылығы, талшық бойына параллель 

түскен кезде сигнал нөлге жақындайды, себебі бұл жағдайда бөлшектердің 

қозғалысы талшықтың бойлық бағытымен сəйкес келмейді. Сол сияқты, 

толқын талшыққа перпендикуляр (90°) түскенде де DAS жүйесі жауап 
бермейді, өйткені бұл кезде өлшеу ұзындығының екі шеті арасында 

салыстырмалы орын ауыстыру болмайды. Графиктің жиілік тұрақты 

болғандағы көлденең қимасын қарастырғанда, талшықтың S-толқынға 
сезімталдығы бұрышқа тəуелді синус функциясының екі еселенген түрімен 

(sin 2θ) сипатталатыны анықталады. Бұл DAS технологиясына тəн екінші 

эмпирикалық заңдылықты (second DAS’ism) құрайды. Алайда график 

амплитудалық жауап спектрін көрсететіндіктен, мұнда фазалық полярлықтың 
ауысуы көрінбейді, ол тек фазалық спектрде көрініс табады [23]. 
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1.4 Машиналық оқытудың теориялық негіздері 

 

 Машиналық оқыту (Machine Learning) – статистикалық əдістер мен 
компьютерлік ғылымдардың тоғысынан пайда болған бағыт. Бұл ұғымды 

алғаш рет 1959 жылы Артур Самуэль енгізген. Бүгінде машиналық оқыту 

жасанды интеллекттің (Artificial Intelligence, AI) маңызды ішкі саласы ретінде 

қарастырылады, оның негізгі мəні - компьютерлердің алдын ала берілген 
үлкен көлемді деректер негізінде жаңа ақпаратты автоматты түрде өңдеуі, 

талдауы жəне классификациялауы. Мұндай жүйелер нақты тапсырмаларды 

толық бағдарламаламай-ақ, үйренген математикалық модельдерге сүйене 
отырып, болжамдар жасай алады. 

Машиналық оқыту алгоритмдері үлгілік (training) деректер жиынын 

пайдаланып, математикалық модельдер құрастырады, осының нəтижесінде 

компьютерлер күрделі процестердің нəтижесін өздігінен болжай алады. Яғни, 
егер қандай да бір қиын есеп бойынша прогноз жасау қажет болса, міндетті 

түрде бүкіл логиканы қолмен кодтау талап етілмейді; алгоритмге тиісті 

деректерді ұсыну жеткілікті, ал модель осы деректер негізінде болжам 
жасайтын математикалық құрылым қалыптастырады. Жалпы алғанда, 

машиналық оқыту үш негізгі санатқа бөлінеді - Қадағаланатын оқыту 

(Supervised Learning), қадағаланбайтын оқыту (Unsupervised Learning), 

күшейтілген оқыту (Reinforcement Learning). Бұл құрылым схемалық түрде 
1.10 - суретте көрсетілген [25]. 

Қадағаланатын оқытуда модельді үйрету үшін алдын ала белгіленген 

(labeled) үлгілік деректер жиыны пайдаланылады. Оқыту кезеңінде алгоритм 
кіріс пен шығыс арасындағы байланысты үйренеді, ал кейіннен жаңа деректер 

үшін нəтижені болжауға қабілетті болады. Бұл тəсілдің негізінде «supervision» 

ұғымы жатыр, яғни алгоритм белгілі бір эталон дұрыс жауаптармен 

бағытталып отырады. Мұндай əдіс модельді дайындау барысында адам 
тарапынан белгілі бір дəрежеде белгілеу жұмысын талап етеді, бірақ соның 

нəтижесінде күрделі тапсырмаларды жылдам əрі автоматты орындауға қол 

жеткізіледі. 
Қадағаланатын оқыту машиналық оқытудың ең кең қолданылатын 

түрлерінің бірі болып табылады. Бұл санат өз ішінде екі топқа бөлінеді: 

регрессия жəне классификация алгоритмдері [25].  
 



 27 

 
 

1.10 - сурет – Машиналық оқыту алгоритмдерінің жіктелуі [25] 

 

Support Vector Machine (SVM) - классификация міндеттерінде кеңінен 
қолданылатын əдістердің бірі. Оның жұмыс істеу принципі деректерді 

ажырататын margin шамасын максимизациялауға негізделеді. Бұл тəсіл 

жоғары өлшемді белгілер кеңістігінде объектілерді əртүрлі класстарға бөлу 
үшін гипержазықтықты (hyperplane) немесе гипержазықтықтар жиынтығын 

құруға мүмкіндік береді. Бастапқыда SVM тек екі классты классификациялау 

(binary classification) міндеттерін шешуге арналған болатын. Алайда кейінгі 

зерттеулерде бірнеше гипержазықтықтарды бірлесіп қолдану арқылы 
көпклассты (multi-class) классификация есептерін шешуге мүмкіндік беретін 

кеңейтілген алгоритмдер ұсынылды. SVM жұмысы 1.11  – суретте көрсетілген 

[26]. 
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1.11 - сурет - SVM жұмысы [26] 
 

K-Nearest Neighbors (K-NN) - машиналық оқытудың қадағаланатын 

(supervised) əдістерінің бірі жəне ең қарапайым əрі кең қолданылатын 
классификация алгоритмдерінің бірі. Оның негізгі идеясы - жаңа берілген 

нүктені оған ең жақын тұрған k көрші деректердің классына қарай жіктеу. K-

NN алдын ала модель құрмайды, сондықтан lazy learner деп аталады: барлық 

оқу деректері тек сақталады, ал нақты классификация жаңа нүкте келген кезде 
ғана жүзеге асады. Алгоритм non-parametric, яғни кіріс пен шығыс арасында 

алдын ала берілген математикалық байланыс болмайды; шешім тек қашықтық 

өлшемі арқылы қабылданады. 

K-NN классификацияда кеңінен қолданылады, сонымен қатар регрессия 
жəне жетіспейтін мəндерді толтыру (imputation) үшін де тиімді. Жаңа белгісіз 

нүкте өзінің көршілеріне қаншалық жақын екеніне байланысты белгілі бір 

класқа жатқызылады. Алгоритм деректер белгіленген (labeled) жəне шуыл 
деңгейі төмен болған жағдайларда жақсы нəтиже береді. K-NN алгоритмінің 

қалай жұмыс істейтінін көрсететін жіктеу мысалы 1.12 – суретте көрсетілген 

[25]. 
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1.12 - сурет – Көршілерге негізделген жаңа деректер нүктесінің жіктелуі [25] 
 

 Қадағаланбайтын оқыту - белгіленбеген (unlabeled) деректермен жұмыс 

істейтін машиналық оқыту əдістерінің жиынтығы. Бұл тəсілде модель кіріс 
деректердің ішкі құрылымын, жасырын байланыстарын немесе топтарын 

автоматты түрде анықтайды. Оқыту процесі деректердің өз ерекшеліктеріне 

негізделгендіктен, модельге қандай нəтижені күту керектігі жөнінде нақты 

нұсқау берілмейді. 
Қадағаланбайтын оқыту көбінесе кластерлеу жəне өлшемділікті азайту 

(dimensionality reduction) сияқты міндеттерді шешуге қолданылады. Бұл 

санаттағы ең танымал алгоритмдерге K-means кластерлеуі, негізгі 

компоненттер əдісі (PCA), иерархиялық кластерлеу модельдері, жасырын 
Марков модельдері (HMM) жəне əртүрлі нейрондық желілер жатады. 

Күшейтілген оқыту - агенттің ортадан алған кері байланысы негізінде 

үйренуін сипаттайтын əдіс. Бұл тəсілде жүйе дұрыс əрекет жасағаны үшін 
сыйақы (reward) алады, ал қате қадам үшін жаза (penalty) беріледі. Осындай 

үздіксіз бағалау механизмінің арқасында агент өзінің стратегиясын жетілдіріп, 

уақыт өте келе əрекетінің тиімділігін арттырады. Бұл типтегі оқытуда агент 

қоршаған ортамен тікелей əрекеттесіп, оның қасиеттерін тəжірибе арқылы 
зерттейді [25]. 

Алдыңғы бөлімде атап өтілгендей, қадағаланатын оқыту екі негізгі 

санатқа бөлінеді: регрессия жəне классификация. Регрессия алгоритмдері кіріс 
айнымалылары мен үздіксіз мақсатты айнымалы арасындағы байланысты 

моделдеу үшін қолданылады. Мысалы, қор нарығындағы өзгерістерді болжау 

немесе халық санының ұзақ мерзімді динамикасын анықтау. Классификация 

алгоритмдері нəтижесі категориялық сипатта болатын есептерде тиімді. 
Мысалы: «дөңгелек немесе үшбұрыш», «шын немесе жалған», «оңға немесе 

солға», «иə немесе жоқ» сияқты шешімдер [25]. 

Машиналық оқытудың классикалық əдістері көптеген практикалық 
есептерді тиімді шешкенімен, күрделі, жоғары өлшемді жəне құрылымы 
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айқын емес деректерді өңдеу кезінде олардың мүмкіндігі шектеулі болуы 

мүмкін. Осындай жағдайда машиналық оқытудың дамыған əрі тереңдетілген 

бағыты – терең оқыту (Deep Learning) алдыңғы қатарға шығады. Терең оқыту 
көп қабатты нейрондық желілерге сүйене отырып, деректердегі маңызды 

белгілерді автоматты түрде анықтайды жəне дəстүрлі əдістер талап ететін 

қолмен feature engineering қадамдарын қажет етпейді. Сондықтан ол бейсызық, 

көпөлшемді жəне үлкен көлемді деректерге негізделген есептерді шешуде 
машиналық оқытудың табиғи жалғасы əрі келесі даму кезеңі болып саналады. 

Терең нейрондық желілер (Deep Neural Networks) көбіне алға 

бағытталған нейрондық желілер (Feed-Forward Neural Networks, FFNN) 
түрінде құрылады. Мұндай архитектурада ақпарат кіріс қабатынан бастап 

жасырын қабаттар арқылы шығыс қабатына қарай тек бір бағытпен өтеді жəне 

кері бағытта қозғалыс болмайды. Қабаттар арасындағы байланыстар біржақты 

болғандықтан, сигнал бұрынғы нейрондарға қайта оралмайды жəне ешбір 
түйін (node) қайталанып өңделмейді (1.13 - сурет) [27]. 
 

 
 

1.13 - сурет – Терең нейрондық желілер архитектурасы 

 
Терең оқытуда ең кең тараған архитектуралар қатарына конволюциялық 

нейрондық желілер (CNN), рекурренттік нейрондық желілер (RNN), LSTM 

жəне GRU үлгілері, сондай-ақ автоэнкодерлер (Autoencoders) мен 

трансформерлік модельдер (Transformers) жатады. CNN кеңістіктік 
құрылымды, мысалы, спектрограммалар немесе суреттерді өңдеуде тиімді 

болса, LSTM жəне GRU уақыттық қатарлармен, соның ішінде сейсмикалық 

сигналдар мен DAS өлшемдерімен жұмыс істеуде жоғары нəтижелер көрсетеді 

[27]. 
Конволюциялық нейрондық желілер (CNN) – терең оқыту саласында ең 

кең таралған жəне қарқынды қолданылатын архитектуралардың бірі. CNN-нің 

басты артықшылығы - маңызды белгілерді деректердің өзінен автоматты 
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түрде бөліп алуы, яғни feature extraction кезеңінде адам тарапынан қосымша 

өңдеуді қажет етпеуі. Осы қабілетінің арқасында CNN компьютерлік көру, 

дауысты өңдеу, бет тану жəне басқа да көптеген салаларда кең қолданыс 
тапты. CNN құрылымы биологиялық жүйелерге, əсіресе адам мен 

жануарлардың көру қыртысындағы (visual cortex) нейрондық ұйымдасу 

принциптеріне негізделген. Модель мысықтың көру жүйесіндегі нейрондар 

тізбегінің жұмысын белгілі бір деңгейде имитациялайды. Суреттерді жіктеуге 
арналған CNN архитектурасының мысалы 1.14 – суретте көрсетілген [28]. 
 

 
 

1.14 - сурет – CNN архитектурасының мысалы 

 

Терең нейрондық желілердің негізгі үйренетін параметрлері - weights, 

яғни кіріс сигналдарын шығысқа түрлендіретін коэффициенттер. Деректердегі 
бейсызық байланыстарды үйрену үшін əр қабаттың шығысына арнайы 

бейсызық активация функциялары қолданылады. Ең кең тарағандарына 

Sigmoid, ReLU жəне Tanh функциялары жатады. Қолданылатын функция түрі 
деректердің сипатына жəне шешілетін есептің табиғатына байланысты 

таңдалады [6]. 

Бұл жұмыста қадағаланатын оқыту тəсілі қолданылып, DAS 

өлшемдеріндегі сейсмикалық сигналдарды анықтай алатын терең нейрондық 
желі моделі құрастырылды. Модельдің мақсаты - берілген DAS сигнал 

үзіндісінің сейсмикалық толқын болуы ықтималдығын есептеу. Жүйені оқыту 

үшін дəстүрлі кеңжолақты сейсмометрлермен жазылған сейсмикалық 
сигналдар мен шу деректерінен құралған үлкен көлемді белгіленген деректер 

базасы пайдаланылды. Оқыту барысында сигналдар топтамалар (batch) 

түрінде модельге жіберіліп, əр кіріс үшін сейсмикалық оқиға ықтималдығы 

есептеледі. Модельдің болжауы ground truth белгілерімен салыстырылып, қате 
шамасы Binary Cross-Entropy (BCE) шығын функциясы арқылы бағаланады 
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[6]. BCE ықтималдықтарды бағалайтын екі классты классификация үшін 

стандартты өлшем болып табылады: 

 

                  𝐿(𝑦̂, 𝑦) = −
1

𝑁
∑ [𝑦𝑛 log(𝑦𝑛̂) + (1 − 𝑦𝑛) log(1 − 𝑦𝑛̂)]𝑁

𝑛=1 ;                  (1.8) 

 

мұндағы мұндағы yˆ - модельдің шығысы (яғни, кіріс өлшемдерінің 
сейсмикалық толқындар болу ықтималдығы), y - кіріс толқын пішінінің 

жиыны үшін шынайы белгілердің векторы, ал N - əрбір партиядағы мысалдар 

саны. 
Желінің параметрлерін жаңарту үшін градиенттер есептеледі. Толық 

деректер жиыны бойынша градиенттерді есептеу есептеу жағынан өте ауыр 

болғандықтан, градиенттер batch негізінде жуықталады. Градиенттерді 

есептеу backpropagation алгоритмі арқылы жүзеге асады. Параметрлер 
градиент бағытымен жаңартылып, олардың өзгеру шамасы learning rate 

гиперпараметрімен басқарылады [6]. 

Модельдің соңғы өнімділігін бағалау үшін оқу жəне валидация 

деректерінен бөлек test set қолданылады. Əр сынаманың сейсмикалық толқын 
болуы ықтималдығы есептеліп, нақты белгілермен салыстырылады. 

Классификация нəтижелері белгілі бір threshold мəніне байланысты 

интерпретацияланады. Модельді бағалау үшін төрт негізгі метрика 
қолданылды: Accuracy, Precision, Recall, F-score. Бұл метрикалар True Positive 

(TP), True Negative (TN), False Positive (FP) жəне False Negative (FN) мəндеріне 

сүйеніп есептеледі. Accuracy - дұрыс классификацияланған барлық 

мысалдардың жалпы үлгілер санына қатынасы ретінде анықталады [6]. 
 

                            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑡ℎ) =
𝑇𝑃(𝑡ℎ) + 𝑇𝑁(𝑡ℎ)

𝑇𝑃(𝑡ℎ)+𝑇𝑁(𝑡ℎ)+𝐹𝑃(𝑡ℎ)+𝐹𝑁(𝑡ℎ)
;                         (1.9) 

 
мұндағы th тиісті жіктеу үшін анықталған шекті мəнге сəйкес келеді. 

Recall (толық қамту) - дұрыс анықталған оң нəтижелердің жалпы оң 

мысалдар санына қатынасы. Бұл метрика модельдің барлық нақты позитивті 
жағдайларды қаншалықты толық таба алғанын көрсетеді [6]: 

 

                                              𝑅𝑒𝑐𝑎𝑙𝑙(𝑡ℎ) =
𝑇𝑃(𝑡ℎ)

𝑇𝑃(𝑡ℎ)+𝐹𝑁(𝑡ℎ)
;                                  (1.10) 

 

 Precision (нақтылық) - дұрыс анықталған оң нəтижелердің, модель 

позитив деп жіктеген барлық жағдайлар санына (true positives + false positives) 

қатынасы. Precision жоғары болса, модель жасаған позитивті анықтамалардың 
көпшілігі шын мəнінде дұрыс дегенді білдіреді, яғни триггерлерге сенім 

жоғары болады [6]: 

 

                                             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑡ℎ) =
𝑇𝑃(𝑡ℎ)

𝑇𝑃(𝑡ℎ)+𝐹𝑃(𝑡ℎ)
 ;                           (1.11) 
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F-score - Recall мен Precision көрсеткіштерінің гармониялық орташа 

мəні. Бұл метрика екеуінің арасындағы теңгерімді бағалау үшін қолданылады 

[6]: 
 

                         𝐹 −  𝑠𝑐𝑜𝑟𝑒 (𝑡ℎ) = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑡ℎ) ∙ 𝑅𝑒𝑐𝑎𝑙𝑙(𝑡ℎ)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑡ℎ) + 𝑅𝑒𝑐𝑎𝑙𝑙(𝑡ℎ)
;                                (1.12) 

 

F-score метрикасы Precision мен Recall көрсеткіштерін бір уақытта 
бағалайтындықтан, олардың кез келгені төмендеген жағдайда F-score мəні де 

айтарлықтай төмендейді. Бұл метрика əсіресе жалған оң (false positives) жəне 

жалған теріс (false negatives) нəтижелердің санын бағалауда тиімді, себебі ол 
дəл осы қателіктерге ерекше сезімтал. Accuracy көрсеткіші көбінесе 

деректердегі класстар теңгерімсіз болғанда (imbalanced dataset) 

жаңылыстыруы мүмкін: басым классты дұрыс анықтау жалпы дəлдікті жоғары 

көрсетіп, сирек кездесетін класстағы қателерді жасырып қалуы ықтимал. Ал 
F-score, керісінше, екі классты да дұрыс классификациялауды талап 

ететіндіктен, мұндай жағдайда модельдің шынайы сапасын нақтырақ 

көрсетеді. Модельдің əртүрлі шекті мəндердегі (threshold) жұмысын бағалау 
үшін Precision–Recall (PR) қисығы кеңінен қолданылады. Бұл графикте 

Precision əдетте тік осьте, ал Recall көлденең осьте орналасады, жəне ол 

модельдің жалпы өнімділігін толық əрі дəл бақылауға мүмкіндік береді [6]. 
 
 

1.5 Сейсмикалық сигналдарды машиналық оқыту арқылы өңдеудің 

заманауи тәсілдері (әдеби шолу) 

 

Бұл бөлімде əртүрлі уақыттық жəне кеңістіктік масштабтағы жер 

сілкіністерін болжау үшін машиналық оқыту əдістерін қолдануды зерттейтін 

ғылыми зерттеулерге шолу берілген. Жер сілкінісінің пайда болу процестері 
стохастикалық сипатқа ие болғандықтан жəне сызықтық емес мінез-құлықты 

көрсететіндіктен, соңғы зерттеулер, ең алдымен, осы мəселені шешу үшін 

нейрондық желілерге негізделген модельдерді қолдануға бағытталған. 

Нейрондық желілерден басқа, машиналық оқытудың басқа тəсілдері, соның 
ішінде регрессия мен жіктеудің əртүрлі əдістері де зерттелді жəне осы шолуда 

талқыланады. 

Жер сілкінісін болжау үшін жасанды нейрондық желілерді қолдануды 
зерттеген алғашқы зерттеулердің бірін 2006 жылы Э.И. Альвес ұсынған [29]. 

Автор сейсмикалық белсенділік пен қаржы нарықтары арасында параллельдер 

жүргізіп, екі жүйеге де ортақ хаотикалық жəне күрделі табиғатты атап өтті. 

Осы ұқсастыққа сүйене отырып, қаржылық болжауда дəстүрлі түрде 
қолданылатын көрсеткіштер - мысалы, жылжымалы орташа мəндер (MA), 

жылжымалы орташа конвергенция–дивергенция (MACD) жəне салыстырмалы 

беріктік индексі (RSI) - нейрондық желі моделінің кіріс мүмкіндіктері ретінде 
пайдаланылды. Ұсынылған тəсіл жер сілкінісінің пайда болу уақыты мен 
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географиялық орнын алдын ала белгіленген уақытша жəне кеңістіктік 

интервалдар шегінде болжауға, сондай-ақ оның қарқындылығын 

Модификацияланған Меркалли Қарқындылығы (MMI) шкаласы бойынша 
бағалауға бағытталған [30]. Əдістеме Португалияның Азор аймағындағы 

сейсмикалық деректерді пайдалана отырып бағаланды. Автордың айтуынша, 

модель 1998 жылдың шілдесінде MMI=8 қарқындылығымен жəне 2004 

жылдың қаңтарында MMI=5 қарқындылығымен жер сілкінісі оқиғаларын 
сəтті болжаған. 

Дегенмен, зерттеу нəтижелердің сандық көрсеткіштері туралы есеп 

бермеді, бұл модельдің дəлдігі мен сенімділігін объективті бағалауды 
қиындатады. Сонымен қатар, болжамды уақытша терезелер салыстырмалы 

түрде кең болды, олардың пайда болу уақыты ±5 айлық диапазонда бағаланды. 

Осы шектеулерге қарамастан, хабарланған нəтижелер перспективалы деп 

сипатталды жəне нейрондық желілерге негізделген тəсілдердің жер сілкінісін 
болжау үшін əлеуетті қолданылуын көрсетті [31]. 

Х.Адели мен А. Панаккат [32, 33] жүргізген зерттеулерде жер сілкінісін 

болжау мəселесі жіктеу тапсырмасы ретінде тұжырымдалған, онда шығыс 
кластары алдын ала белгіленген уақыт терезесінде күтілетін ең күшті 

сейсмикалық оқиғаның магнитудалық интервалдарына сəйкес келеді, мысалы, 

бір ай.. Ұсынылған негіздеме келесі айда белгілі бір географиялық аймақта 

болған ең үлкен жер сілкінісінің магнитудасын шамамен ±0,5 бірлік дəлдікпен 
болжауға бағытталған. Атап айтқанда, 2007 жылы International Journal of 

Neural Systems журналында жарияланған [32] еңбегінде аймақтың 

сейсмикалық əлеуетін бағалау үшін математикалық түрде алынған белгілер 
ретінде қызмет ететін сегіз сейсмикалық көрсеткіш енгізілген. Бұл 

көрсеткіштер жер сілкінісі шамаларының уақытша таралуын сипаттайтын екі 

белгіленген модель негізінде құрылады. Бірінші модель-жер сілкінісінің 

шамасы мен жиілігі арасындағы статистикалық байланысты сипаттайтын 
гутенберг-Рихтердің кері қуат заңы. Екіншісі-жер сілкінісінің сипаттамалық 

моделі, ол белгілі бір тектоникалық аймақтарда үлкен магнитудалық 

құбылыстар кезінде байқалатын сейсмикалық энергияның бөлінуінің мерзімді 
заңдылықтарын ескереді. 

Кейінгі жəне логикалық тұрғыдан байланысты үлес 2009 жылы Neural 

Networks журналында жарияланған [33] мақаласында ұсынылды, онда 

авторлар [32] - да анықталған жер сілкінісін болжау мəселесін шешу үшін 
ықтималдық нейрондық желі (PNN) архитектурасын ұсына отырып, бұрынғы 

жұмыстарын кеңейтті.. Бұл зерттеуде Адели мен Панаккат ұсынылған желіні 

оқыту үшін кіріс мүмкіндіктері сияқты сейсмикалық көрсеткіштер 

жиынтығын пайдаланды. PNN моделінің өнімділігі 33,8°-35,4° N ендіктермен 
жəне 114,75°-119,25° W бойлықтармен шектелген Оңтүстік Калифорния 

аймағының сейсмикалық деректерін пайдалана отырып бағаланды. Нəтижелер 

корреляция коэффициентінің (R) мəндері 0,62-ден 0,78-ге дейінгі магнитудасы 
4,5-тен 6,0-ге дейінгі жер сілкіністерін болжаудың қанағаттанарлық дəлдігін 

көрсетті. Дегенмен, модель магнитудасы 6,0–ден асатын күшті сейсмикалық 
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оқиғаларды болжауда шектеулі тиімділікті көрсетті, олар үшін R мəндері 0,0-

0,5 диапазонына дейін төмендеді. 

Бірге алғанда, [32] жəне [33] - де хабарланған нəтижелерді қосымша 
ретінде қарастыруға болады. Қайталанатын нейрондық желілер жоғары 

магнитудалы жер сілкіністерін болжау үшін қолайлырақ болғанымен, 

ықтимал нейрондық желілер шағын жəне орташа сейсмикалық оқиғалар үшін 

жақсы өнімділікті көрсетті. Адели мен Панаккаттың зерттеулері сейсмикалық 
қауіпті бағалаудың жүйелі, машиналық оқытуға негізделген тəсілдерін 

əзірлеудегі маңызды кезең болып табылады. Атап айтқанда, авторлар енгізген 

сейсмикалылықтың сегіз индикаторының жиынтығы кеңінен қабылданды 
жəне бүкіл əлем бойынша ғалымдар жүргізген кейінгі зерттеулерде одан əрі 

зерттелді [31]. 

2018 жылы Computers & Geosciences журналында жарияланған [34] 

журналында жарияланған зерттеу жеті күндік уақыт көкжиегінде күтілетін ең 
күшті сейсмикалық оқиғаның шамасын болжау мəселесін зерттеді. 

Классификацияға негізделген тұжырымдамалардан айырмашылығы, жер 

сілкінісін болжау регрессия мəселесі ретінде қарастырылды. Осы мақсатта 
регрессияның төрт моделі—жалпыланған сызықтық модельдер, градиентті 

күшейту машиналары, тереңдетіп оқыту тəсілдері жəне кездейсоқ орман 

алгоритмдері-олардың ансамбльдік комбинацияларымен бірге бағаланды. 

Кіріс ерекшеліктері ретінде авторлар бұрын Панаккат пен Адели енгізген 
сейсмикалық көрсеткіштерді қолданды [32]. Бұл жұмыстың айрықша аспектісі 

оның үлкен деректерді талдауға бағытталуы болып табылады: шамамен 1 ГБ 

сейсмикалық деректер модельдерді оқыту жəне бағалау үшін бұлттық есептеу 
инфрақұрылымы арқылы өңделді. 

Модельдің өнімділігі орташа абсолютті қателік (MAE) жəне 

салыстырмалы қателік (RE) көрсеткіштері арқылы бағаланды. Сонымен қатар, 

есептеу тиімділігі əр тəсілге қажетті жаттығу уақытын өлшеу арқылы 
қарастырылды. Бағаланған регрессорлардың ішінде кездейсоқ орман моделі 

ең жақсы жалпы өнімділікті көрсетті, орташа есеппен 0,74 MAE көрсеткішіне 

қол жеткізді, сонымен қатар жоғары есептеу тиімділігін көрсетті, бұл толық 
деректер жинағында жаттығуға небəрі 18 минутты алды. Бір қызығы, 

кездейсоқ орман орташа магнитудалы (4 ≤ м < 7) жер сілкіністері туралы ең 

дəл болжамдарды берді, MAE мəндері 0,26-дан аспады. Керісінше, ансамбльге 

негізделген регрессиялық модельдер экстремалды магнитудалық 
диапазондарда, атап айтқанда шағын (0 ≤ М < 3) жəне үлкен (7 ≤ м < 8) жер 

сілкіністерінде жоғары өнімділікті көрсетті [31]. 

[35] – жұмыста 2017 Жылы Natural Hazards журналында жарияланған, 

Асим жəне т.б. жер сілкінісін болжау ≥ 5,5 баллдық оқиғалардың ай сайынғы 
болжамдарына назар аудара отырып, екілік жіктеу мəселесі ретінде 

қарастырылды. Зерттеуге Адели мен Панаккат енгізген сегіз сейсмикалық 

көрсеткіштер қолданылды [32] қайталанатын нейрондық желілерді, үлгіні 
танудың нейрондық желілерін, кездейсоқ орманды жəне шешім ағаштарының 

LPBoost ансамблін қоса алғанда, машиналық оқытудың бірнеше үлгілеріне 
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кіріс ретінде. Модельдер дəлдік, сезімталдық, ерекшелік жəне болжамды 

мəндер сияқты бірнеше өнімділік көрсеткіштерін пайдалана отырып 

бағаланды. Индукуш аймағының сейсмикалық деректері бойынша жүргізілген 
эксперименттер LPBoost ансамблінің ең жоғары дəлдікке (65%) жəне 

сезімталдыққа (91%) қол жеткізгенін көрсетті, ал PRNN моделі 71% оң 

болжамды мəнмен көрсетілген ең аз жалған дабылдарды шығарды. Тұтастай 

алғанда, авторлар барлық бағаланған тəсілдер қолайлы болжамды 
көрсеткіштерді көрсетті деген қорытындыға келді. 

2018 жылы PLOS ONE журналында жарияланған Асим жəне т.б. жер 

сілкінісін қысқа мерзімді болжау үшін көп сатылы машиналық оқыту жүйесін 
ұсына отырып, олардың бұрынғы зерттеулерін кеңейтті. Зерттеу 15 күндік 

көкжиекте ≥ 5,0 баллдық сейсмикалық құбылыстарды болжауға бағытталған 

жəне əртүрлі аналитикалық тəсілдер арқылы алынған 60 сейсмологиялық 

параметрлердің кеңейтілген жиынтығын пайдаланды. Мүмкіндіктердің 
ақпараттық көрінісін қамтамасыз ету үшін мүмкіндіктерді алудың бірнеше 

стратегиялары қолданылды [36]. 

Ұсынылған жүйе иерархиялық оқыту стратегиясын қолдану арқылы 
бұрын хабарланған тəсілдерден ерекшеленеді, онда машиналық оқытудың 

бірнеше модельдері дəйекті түрде біріктіріледі. Бастапқыда ең маңызды 

параметрлерді анықтау үшін минималды резервтеу-максималды өзектілік 

(mRMR) критерийіне негізделген мүмкіндіктерді таңдаудың екі сатылы 
процесі қолданылды. Содан кейін таңдалған мүмкіндіктер гибридті 

нейрондық желіге қосымша кіріс ретінде шығыс тенденциясы енгізілген тірек 

векторлық регрессорды оқыту үшін пайдаланылды. Бұл гибридті модель үш 
жасанды нейрондық желіні біріктіреді жəне салмақты оңтайландыру үшін 

бөлшектер тобын оңтайландырудың эволюциялық алгоритмін пайдаланады 

[36]. 

Алынған SVR-HNN құрылымы Индукуш, Чили жəне Оңтүстік 
Калифорния аймақтарынан алынған сейсмикалық деректерді пайдалана 

отырып бағаланды. Модельдің өнімділігі дəлдік, сезімталдық, ерекшелік, 

Мэттьюс корреляция коэффициенті жəне корреляция коэффициенті (R) 
сияқты бірнеше статистикалық көрсеткіштерді пайдалана отырып бағаланды. 

Алдыңғы зерттеулермен салыстырмалы талдау барлық аймақтардағы 

болжамды көрсеткіштердің айтарлықтай жақсарғанын көрсетті, бұл 

ұсынылған көп сатылы əдістеме машиналық оқытудың жеке үлгілерінен асып 
түсетінін көрсетеді [36]. 

Қарастырылған барлық ғылыми еңбектердің негізгі сипаттамалары 1.2 - 

кестеде жинақталған. Осы жұмыстарға жүргізілген салыстырмалы талдау жер 

сілкінісін болжау мəселесін зерттеуде бірқатар ортақ заңдылықтар мен 
əдістемелік үрдістердің бар екенін көрсетті [31]. 
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Кесте 1.2 – Барлық қаралған зерттеулердің қысқаша мазмұны [31] 

 
№ 

(əдеб) 

Сейсмикалық 

аймақ 

Деректер 

көзі 

Қолданылған 

ML əдістері 

Қолданылған 

белгілер 

(features) 

Бағалау 

көрсеткіштері 

[29] Азор аралдары 

(Португалия) 

– ANN Қаржылық 

осцилляторлар 

– 

[32] Оңтүстік 

Калифорния, 

Сан-Франциско 

шығанағы 

(АҚШ) 

SCEC 

каталогы 

LMBP, RNN, 

RBFN 

Гутенберг–

Рихтер заңы мен 

сипаттамалық 

үлестірімге 

негізделген 

сейсмикалық 

индикаторлар 

Sₙ, FAR, FB, R 

[33] Оңтүстік 

Калифорния 

(АҚШ) 

SCEC 

каталогы 

PNN [16]-дағы 

индикаторлар 

Sₙ, FAR, R 

[34] Калифорния 

(АҚШ) 

ANSS 

құрама жер 

сілкінісі 

каталогы, 

CEDS 

GLM, GBM, 

DL 

[16], [18] 

индикаторлары 

MAE, RE 

[37] Грекия Сейсмолог

ия 

институты, 

Афины 

ұлттық 

обсерватор

иясы 

(SINOA), 

VAN тобы 

ANN Барлық 

сейсмикалық 

деректер үшін 

SES моделдеудің 

екі тəсілі 

MAE негізіндегі 

дəлдік 

[35] Хиндукуш 

(Пəкістан) 

Жер 

сілкіністері

н зерттеу 

орталығы 

(Пəкістан), 

USGS 

LMBP-RNN, 

PRNN, RF, 

LPBoost 

[16]-дағы 

индикаторлар 

P₀, P₁, Sₙ, Sₚ, 

Accuracy 

[38] Хиндукуш 

(Пəкістан), 

Чили, Оңтүстік 

Калифорния 

(АҚШ) 

USGS 

каталогы 

GP, AdaBoost Бір уақытта 

қолданылған 50 

сейсмикалық 

индикатор 

P₀, P₁, Sₙ, Sₚ, 

Accuracy, MCC, 

R 

[36] Хиндукуш 

(Пəкістан), 

Чили, Оңтүстік 

Калифорния 

(АҚШ) 

USGS 

каталогы 

mRMR, SVR, 

HNN, EPSO 

Бір уақытта 

қолданылған 60 

сейсмикалық 

индикатор 

P₀, P₁, Sₙ, Sₚ, 

Accuracy, MCC, 

R 
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 Талшықты-оптикалық сенсорлар нақты уақыт режимінде кеңістіктік 

тығыздығы жоғары, көлемі үлкен əрі күрделі құрылымды деректерді өндіруге 

қабілетті. Мұндай деректерде сейсмикалық тербелістер, механикалық 
деформация, температуралық өзгерістер, акустикалық діріл, тіпті 

құрылымдық ақау белгілері сияқты əртүрлі физикалық құбылыстар қатар 

көрінеді. Дегенмен, бұл сигналдар көбіне жоғары дəрежеде шуылдаған, 

көпөлшемді, уақытша жəне кеңістіктік тұрғыдан тəуелді болғандықтан, 
оларды дəстүрлі əдістермен талдау көп жағдайда тиімсіз немесе толық емес 

нəтиже береді. 

Осыған байланысты, талшықты-оптикалық сенсорлардан алынған 
сигналдарды өңдеуде машиналық оқыту (Machine Learning) жəне əсіресе оның 

терең оқыту (Deep Learning) бағыттары кеңінен қолданылуда. Машиналық 

оқыту əдістері үлкен көлемдегі деректер ішінен жасырын заңдылықтарды 

автоматты түрде табуға, көпөлшемді белгілерді (features) өздігінен бөлуге 
жəне сигналдарды классификациялау, детекциялау немесе болжау сияқты 

тапсырмаларды жоғары дəлдікпен орындауға мүмкіндік береді.  

Машиналық оқытуды (ML) сейсмикалық сигналдарды анықтау мен 
талдауға біріктіру сейсмологияда трансформациялық жетістіктерге қол 

жеткізді, бұл жер сілкінісін бақылау жүйелерінің дəлдігі мен тиімділігін 

арттырды. Маңызды жетістіктердің бірі сейсмикалық оқиғаларды жіктеу жəне 

сейсмикалық деректер ішіндегі шуды басу үшін терең оқыту əдістерін 
қолдануды қамтиды. Конволюциялық нейрондық желілер (CNN), атап 

айтқанда, микросейсмикалық құбылыстарды тануда жəне жіктеуде маңызды 

рөл атқарды, осылайша əртүрлі бақылау сценарийлерінде дəстүрлі əдістерден 
асып түсті [39, 40]. Бұл модельдердің дəлдігі шулы сейсмикалық деректер 

жиынтығында минуттық үлгілерді алуға мүмкіндік береді, бұл сигналдарды 

сəйкестендіруді жақсартуға əкеледі [40, 41]. Сонымен қатар, нақты уақыттағы 

Denoiser (RTDenoiser) сияқты нақты уақыттағы қолданбаларға бейімделген 
жетілдірілген алгоритмдер кең сейсмикалық желілерден алынған жер сілкінісі 

деректерінің үздіксіз тікелей эфирінде шуды тиімді басу үшін терең оқытуды 

пайдаланады. Бұл əдіс əсіресе жер сілкінісі емес сигналдар мен қоршаған 
ортаның шуы деректер сапасына жиі нұқсан келтіретін нақты уақыттағы 

операцияларда сигналдың тұтастығын сақтау үшін пайдалы [42]. Ұзақ 

мерзімді қысқа мерзімді жад (LSTM) желілерін басқа терең оқыту 

парадигмаларымен біріктіретін гибридті модельдер сейсмикалық оқиғаларды 
фондық шудан ажыратудың жақсартылған мүмкіндіктерін көрсетті [43]. 

 

 

1 бөлім бойынша қорытынды 

 

Жүргізілген теориялық талдау таралған акустикалық сезгіштік (DAS) 

технологиясының дəстүрлі сейсмикалық датчиктермен салыстырғанда 
оптикалық талшықтың бүкіл ұзындығы бойымен деформацияны үздіксіз 

өлшеу мүмкіндігіне ие екенін көрсетті. Бұл қасиет DAS жүйелерін əлсіз жəне 
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локалды сейсмикалық оқиғаларды тіркеуде аса перспективалы етеді. DAS 

сигналының физикалық табиғаты орын ауыстыру немесе жылдамдықтың 

кеңістіктік градиентімен анықталады, ал жүйенің P жəне S толқындарға 
сезімталдығы толқынның түсу бұрышы мен жиілігіне тəуелді екені 

анықталды, бұл деректерді интерпретациялау кезінде маңызды рөл атқарады. 

Сонымен қатар, дəстүрлі сигнал өңдеу əдістерінің DAS деректерінің 

жоғары өлшемділігі мен шуылдылығы жағдайында шектеулі екені көрсетілді. 
Осыған байланысты машиналық оқыту əдістері, əсіресе терең оқыту 

архитектуралары, сейсмикалық жəне DAS сигналдарындағы кеңістіктік-

уақыттық заңдылықтарды автоматты түрде анықтауға мүмкіндік береді. CNN, 
RNN жəне LSTM модельдері жоғары дəлдік көрсететін тиімді құралдар 

ретінде қарастырылды. Модельдердің сапасын бағалауда Precision, Recall 

жəне F-score көрсеткіштерін қолданудың маңыздылығы, сондай-ақ Precision–

Recall қисықтары арқылы талдаудың тиімділігі негізделді. Жалпы алғанда 
терең оқыту əдістерін одан əрі дамыту жəне нейрондық желілер 

архитектурасын оңтайландыру DAS деректері бойынша сейсмикалық 

оқиғаларды автоматты анықтаудың дəлдігін арттыруға мүмкіндік береді. 
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2 DAS деректерін алдын ала өңдеу және сигналдарды тану әдістемесі 

 

2.1 Таратылған акустикалық талшықты-оптикалық сенсордың 

(DAS)  деректер жиынтығы 

 

 Бұл зерттеу жұмысында қолданылған деректер жиынтығы Distributed 

Optical Fibre Sensors (DOFS) технологиясына негізделген. DOFS жүйесі 
талшықты-оптикалық кабель бойымен таралған жарықтың кері шашырауын 

талдау арқылы механикалық деформациялар мен тербелістерді үздіксіз жəне 

кеңістіктік тұрғыдан жоғары дəлдікпен тіркеуге мүмкіндік береді. Атап 
айтқанда, бұл жұмыста пайдаланылған деректер Distributed Acoustic Sensing 

(DAS) əдісі арқылы алынған, мұнда талшық бойындағы əрбір нүкте виртуалды 

сезгіш ретінде қарастырылады. Мұндай тəсіл мыңдаған өлшеу арналарын бір 

мезетте қамтып, сейсмикалық сигналдарды жоғары уақыттық жəне кеңістіктік 
рұқсаттылықпен бақылауға жағдай жасайды. DOFS-қа негізделген деректер 

классикалық нүктелік сейсмикалық сенсорлармен салыстырғанда кең аумақты 

мониторингтеудің тиімді құралын ұсынып, жер қыртысындағы динамикалық 
процестерді тереңірек зерттеуге мүмкіндік береді. 

 Imperial Valley Dark Fiber Project Continuous DAS Data - Imperial Valley 

(Оңтүстік Калифорния, АҚШ) аймағында алынған Distributed Acoustic Sensing 

(DAS) технологиясы арқылы тіркелген сейсмикалық деректер жиынтығы. Бұл 
датасет 28 км-ге жуық телеком кабель сегментіндегі DAS сигналдарын 

қамтиды, ол Calipatria жəне Imperial қалалары арасындағы «dark fiber» 

желісінде орналастырылған. «Dark fiber» - телекоммуникация жүйелерінде 
қазір қолданылмай тұрған талшықты-оптикалық сымдар, олар осы жобада 

DAS жүйесіне арнап қайта пайдаланылған [47]. 

 Зерттеуде қолданылған DAS деректері жер астына көмілген оптикалық 

кабельден алынған. Кабельдің орналасу сұлбасы 2.1 - суретте көрсетілген. 
Оптикалық кабель: 

 - жер бетінен шамамен 1-2 м тереңдікте орналасқан; 

 - үстіңгі қабатта əртүрлі материалдармен (топырақ, бетон, асфальт) 
жабылған; 

- кабельдің өзі ПВХ немесе соған ұқсас қорғаныш қабықшамен 

қапталған. 

Талшықты-оптикалық кабельдің үстінде жəне айналасында орналасқан 
бұл қабаттар жер бетіндегі жəне жер қойнауындағы деформациялардың 

кабельге тиімді берілуін қамтамасыз етеді. 
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2.1 - сурет – Оптикалық кабельдің орналасу сұлбасы 

 
 Imperial Valley - Салтон шұңқыр жүйесінің оңтүстік шетіндегі 

сейсмикалық белсенді алаң, геотермиялық көздерге бай аймақ. Жоба осы 

талшықты-оптикалық кабельді пайдаланып жерүсті жəне жер асты 
сейсмикалық сигналдарды жоғары кеңістіктегі тығыздықпен ұзақ 

қашықтықтарға дейін тіркеуді мақсат етеді. Бұл датасет Lawrence Berkeley 

National Laboratory жəне Rice University ғылыми ұйымдарының зерттеуі 

нəтижесінде жарияланды. Жоба АҚШ Энергетика департаментінің Geothermal 
Technologies Office қаржыландыруымен жүзеге асырылды.  

Зерттеу мақсаты: 

- Dark fiber кабелі мен DAS технологиясын пайдалана отырып, 
геотермиялық жүйелер мен сейсмикалық белсенділікті жоғары бөлшектікпен 

зерттеу; 

- Бассейн масштабындағы жер асты құрылымдарды сипаттау жəне 

геотермиялық ресурстарды мониторингтеу əдістерін дамыту; 
- Өрістегі DAS өлшеулерінің сенімділігін, шу сипаттамаларын жəне 

деректер сапасын бағалау. 

Деректердің техникалық сипаттамасына сəйкес, қолданылған DAS 
деректер жиынтығы үздіксіз режимде тіркелген жер сілкінісінің 100 оқиғасын 

қамтиды. Деректер HDF5 (.h5) форматында сақталған, бұл оларды MATLAB 

жəне Python сияқты ғылыми есептеу орталарында тиімді өңдеуге мүмкіндік 

береді. Құрылымдық тұрғыдан алғанда, деректер шамамен 2 880 файлдан 
тұрады, олардың əрқайсысы бір минуттық DAS strain rate өлшемдерін 

қамтиды. 1 жазба бойында (файлда) 6 912 өлшеу арнасы пайдаланылған, 

арналар арасындағы кеңістіктік қадам 4 метрді құрайды, ал өлшеу ұзындығы 

10 метрге тең. Уақыттық рұқсаттылығы жоғары болып, үлгілеу жиілігі 500 Гц 
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деңгейінде жүзеге асырылған, бұл сейсмикалық тербелістердің уақыт 

бойынша егжей-тегжейлі құрылымын талдауға мүмкіндік береді. Бұл 

параметрлер DAS-тың жоғары кеңістіктік жəне уақыттық рұқсаттылығын 
қамтамасыз етеді, яғни жердегі тербелістер мен сейсмикалық сигналдарды өте 

жоғары шеберлікпен жазуға мүмкіндік береді.  
2.2 – суретте DAS деректер жиынын машиналық оқыту негізінде өңдеу, 

валидациялау жəне тестілеу кезеңдерінің жалпы сұлбасы көрсетілген. 
Алдымен бастапқы DAS деректері алдын ала өңдеуден өткізіледі, оның ішінде 

шуды азайту жəне сигналды қалыпқа келтіру операциялары орындалады. 

Кейін деректер жиыны оқыту, тексеру жəне тестілеу жиындарына бөлінеді. 
Оқыту кезеңінде модель параметрлері анықталып, тексеру жиыны арқылы 

модельдің жалпылау қабілеті бақыланады. Соңғы кезеңде тест деректер 

жиыны негізінде модельдің тиімділігі бағаланып, DAS сигналдары бойынша 

алынған нəтижелер талданады. 
 

 
 

2.2 - сурет – DAS деректер жинағын оқыту, валидация жəне тестілеу сұлбасы 
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2.2 Деректерді алдын ала өңдеу – сүзгілеу 

 

Distributed Acoustic Sensing (DAS) технологиясы арқылы алынған 
деректер жоғары кеңістіктік жəне уақыттық ажыратымдылығымен 

ерекшеленеді. Алайда DAS жүйесімен тіркелетін бастапқы сигналдар (raw 

data) тек сейсмикалық толқындарды ғана емес, сонымен қатар əртүрлі табиғи 

жəне антропогендік шуды, сондай-ақ талшықтың жермен байланысуына 
(coupling) байланысты əсерлерді қамтиды. Сондықтан DAS деректерін тікелей 

талдау сенімді нəтижелерге əкелмейді жəне алдын ала өңдеу кезеңін міндетті 

түрде талап етеді. 
Алдын ала өңдеудің негізгі мақсаты – пайдалы сейсмикалық ақпаратты 

(P жəне S толқындар) күшейтіп, шудың əсерін азайту, сигнал-шу қатынасын 

(SNR) арттыру жəне деректерді əрі қарайғы талдауға жарамды күйге келтіру. 

2.3 - суретте DAS массиві арқылы алынған типтік жазба бірнеше 
минуттық үздіксіз бақылауды көрсетеді. Бұл жазбада бір мезгілде əртүрлі 

физикалық процестерден туындайтын сигналдар тіркеледі: жер сілкінісі, көлік 

қозғалысы, өндірістік жабдықтардың жұмысы жəне фондық шу. Сондықтан 
DAS деректері табиғаты бойынша көп компонентті жəне күрделі құрылымға 

ие. Берілген жазбада уақыт осі бойымен (шамамен 0–300 с аралығында) жəне 

виртуалды сенсорлар нөмірі бойынша сигналдардың таралуы көрсетілген. 

Жазбаның орталық бөлігінде Imperial Valley аймағында тіркелген 
магнитудасы шамамен M≈3.5 болатын жер сілкінісінің сигналы айқын 

байқалады. Бұл сигнал көптеген арналарда бір уақытта көрініп, кеңістіктік 

корреляцияға ие, яғни ол сейсмикалық толқындардың таралуына тəн 
сипаттамаларды көрсетеді.  

Сонымен қатар жазбада бірнеше түрлі шу көздері анық байқалады:  

 - Интерферометриялық фондық шу - DAS жүйесінің үздіксіз лазерлік 

импульстар жіберуіне байланысты пайда болатын əлсіз, бірақ тұрақты 
сигналдар;  

 - Көлік шуы (автокөліктер, автобустар) – уақыт бойынша еңкіш 

(диагональ) іздер түрінде көрінеді, бұл қозғалмалы көздерден тарайтын 
толқындарға тəн белгі; 

 - Механикалық немесе өндірістік шу (мысалы, сорғылар) – белгілі бір 

арналарда жəне тұрақты жиілік диапазонында байқалады. 
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2.3 - сурет – 5 минут ішіндегі DAS сенсорының жазбасы 

 

Бұл шу компоненттері сейсмикалық сигналдармен қабаттасып, пайдалы 
ақпаратты ажыратуды қиындатады. Атап айтқанда, кейбір арналарда 

жергілікті coupling жағдайына байланысты сигнал амплитудасы əлсіреген 

немесе күшейген түрде көрінуі мүмкін. 

Осы құбылыстың физикалық себептері 2.4 - суретте егжей-тегжейлі 
көрсетілген. Мұнда бір сейсмикалық оқиға үшін талшық бойымен тіркелген 

сигналдардың кеңістіктік өзгергіштігі кабель–жер ортасының байланысымен 

(fiber–soil–rock coupling) жəне жергілікті шу көздерімен түсіндіріледі. 
Кабельдің төселу жағдайы, жер бетіне жақын қабаттардың қасиеттері жəне 

кабель бағытының өзгеруі бірдей сейсмикалық толқындардың əр арнада 

əртүрлі амплитудада жəне формада тіркелуіне əкеледі. 

DAS жүйесі талшық бойындағы осьтік деформацияларды тіркеп, уақыт–
кеңістік (time–distance) форматында үздіксіз сейсмикалық жазба береді. 

Суретте жер сілкінісінің P-толқыны мен S-толқынының келу фронттары 

айқын байқалады. Сонымен қатар жазбада жергілікті шу көздерінің (көлік, 
өндірістік белсенділік) жəне fiber–soil coupling əсерлерінің сигналға ықпалы 

көрінеді. Кабель бағытының өзгеруі мен жермен байланыс сапасының 

əркелкілігі сигнал амплитудасының кеңістікте өзгеруіне əкеледі. 
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2.4 - сурет – DAS сенсоры арқылы тіркелген нақты жер сілкінісінің 

сигналдарын тану 
 

Осы жұмыста DAS деректері талшық бойымен əр 10 м сайын 

орналастырылған виртуалды датчиктер арқылы алынған. Мұндай кеңістіктік 
дискретизация сейсмикалық толқындардың таралу динамикасын жоғары 

ажыратымдылықпен бақылауға мүмкіндік береді. 2.5 - суретте 10 м 

арақашықтықтағы виртуалды DAS датчиктерінде тіркелген сигналдардың 

уақыт бойынша өзгерісі жəне жеке трассалардағы тербелістер көрсетілген. 
Суреттің сол жақ бөлігінде уақыт–кеңістік жазбасында (time–offset 

domain) тіркелген толқын өрісі берілген, мұнда сейсмикалық толқындардың 

талшық бойымен таралуы анық байқалады. Ал оң жақ бөлігінде бір виртуалды 

датчик үшін алынған амплитудалық сигнал көрсетіліп, онда P толқынының 
ертерек келуі жəне S толқынының кейінгі, бірақ амплитудасы жоғарырақ 

бөлімі айқын ажыратылады. Бұл P жəне S толқындарының физикалық 

табиғатына сəйкес келеді, яғни P толқындары жоғары жылдамдықпен 
таралып, ал S толқындары салыстырмалы түрде баяу таралады. 
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2.5 - сурет – 10 м арақашықтықтағы виртуалды DAS датчиктерінде тіркелген 

P жəне S толқындары 

 

Бұл зерттеуде сейсмикалық сигналдарды шудан тазарту үшін əртүрлі 
принциптерге негізделген сүзгілеу əдістері қолданылды. Сүзгілердің 

тиімділігін жан-жақты бағалау мақсатында уақыт–жиілік аймағында жұмыс 

істейтін адаптивті əдіс жəне жиілік аймағында қолданылатын классикалық 
сүзгі қарастырылды. Осыған байланысты төменде Винер жəне Баттерворт 

сүзгілерінің теориялық негіздері мен қолданылу ерекшеліктері сипатталады. 

 
2.2.1 Винер сүзгісі 

 
Бұл зерттеуде сейсмикалық сигналдарды шудан тазарту үшін уақыт - 

жиілік аймағында жұмыс істейтін Винер сүзгісі қолданылды. Винер сүзгісі 

сейсмикалық сигнал мен шудың спектралдық сипаттамаларына негізделе 

отырып, пайдалы сигналды қалпына келтіруге мүмкіндік беретін тиімді əдіс 
болып табылады. Аталған тəсіл болашақтағы шу деңгейін ағымдағы сигнал 

ақпараты арқылы бағалауға мүмкіндік береді жəне сейсмикалық деректерді 

өңдеуде кеңінен қолданылады. 
Винер сүзгісін іске асырудың алғашқы кезеңінде бастапқы уақыт 

аймағындағы сейсмикалық сигнал қысқа уақыттық Фурье түрлендіру (STFT) 

арқылы уақыт - жиілік аймағына ауыстырылады. STFT үдерісі сигналды бір-

бірімен қабаттасатын қысқа уақыт сегменттеріне бөліп, əр сегмент үшін жиілік 
аймағындағы спектралдық амплитуданы есептейді. Осылайша, сигналдың 

уақыт бойынша өзгеретін жиілік құрамы анықталады.  
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k-ші жиілік индексі мен n-ші уақыт сегментіндегі бастапқы сигнал 

спектрі Y(k, n) қажетті сигнал спектрі X(k, n) мен шу спектрі S(k, n) 

қосындысынан тұрады деп болжанады, бұл төмендегі теңдеуде көрсетілген: 
 

                                             𝑌(𝑘, 𝑛) = 𝑋(𝑘, 𝑛) + 𝑆(𝑘, 𝑛)                                    (2.1) 

 
Қажетті сигнал спектрін бағалау үшін бастапқы сигнал спектрі күшейту 

функциясымен 𝐺(𝑘, 𝑛) немесе Винер сүзгісінің беріліс функциясымен 

көбейтіледі. Мұндағы 𝑋̂(𝑘, 𝑛)— 𝑋(𝑘, 𝑛) бағаланған мəнін білдіреді. 

𝑋(𝑘, 𝑛)алынғаннан кейін, ол кері STFT көмегімен уақыт аймағындағы 

сигналға қайта қалпына келтіріледі. Қажетті спектрді бағалау келесі 

формуламен өрнектеледі: 

 

                                    𝑋̂(𝑘, 𝑛) = 𝐺(𝑘, 𝑛) ⋅ 𝑌(𝑘, 𝑛)                                     (2.2) 

 

Жиілік аймағында бақыланған сигнал қажетті сигнал мен шудың 

қосындысы ретінде қарастырылады. Қажетті сигнал спектрін бағалау үшін 
Винер сүзгісінің беріліс функциясы қолданылады, ол сигналдың қуат 

спектрінің шу қуат спектріне қатынасына тəуелді. Бұл беріліс функциясы 

сигнал - шу қатынасы (SNR) негізінде анықталып, жиілікке жəне уақытқа 
тəуелді түрде өзгеріп отырады. 

Сейсмикалық шу деңгейі алдын ала белгілі болмағандықтан, ол шешімге 

бағытталған əдіс арқылы бағаланады. Бұл əдіс алдыңғы уақыт сегментіндегі 

сүзгілеу нəтижелерін пайдалана отырып, ағымдағы уақыт сегменті үшін 
априорлық SNR мəнін есептейді. Мұндай тəсіл сигнал мен шудың стационар 

емес сипатын ескеруге мүмкіндік береді. Шуға қатысты эталон дисперсиясы 

жер сілкінісі сигналы байқалмайтын уақыт аралықтарынан анықталады жəне 

шудың уақыт бойынша өзгеруіне байланысты үздіксіз жаңартылып отырады. 
Шу эталонының жаңартылуы спектралдық айырма жəне шу сегментінің 

ұзақтығы сияқты алдын ала анықталған критерийлерге негізделеді. Бұл 

механизм Винер сүзгісінің əртүрлі шу жағдайларына бейімделуін қамтамасыз 
етеді. Нəтижесінде, Винер сүзгісі төмен жиілікті жəне стационар емес шуды 

тиімді түрде басып, жер сілкінісі сигналының толқын пішіні мен негізгі 

динамикалық ерекшеліктерін мүмкіндігінше сақтай отырып қалпына 

келтіруге мүмкіндік береді [44]. 
 

2.2.2 Баттерворт сүзгісі 

 
Винер сүзгісі сейсмикалық сигналды шудың статистикалық 

сипаттамаларына сүйене отырып бейімделгіш түрде өңдесе, Баттерворт сүзгісі 

сигналды алдын ала анықталған жиілік диапазоны бойынша сүзуге негізделген 

классикалық əдіс болып табылады. Сондықтан бұл зерттеуде Баттерворт 
сүзгісі Винер сүзгісіне балама əрі салыстырмалы тəсіл ретінде қарастырылды. 
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Баттерворт сүзгісі биомедициналық, аудио жəне сейсмикалық сигналдар 

сияқты əртүрлі цифрлық сигналдарды өңдеуде кеңінен қолданылатын 

танымал сүзгі болып табылады. Ол берілген жиілік диапазонына (кесу 
жиілігіне) негізделе отырып сигнал спектрін жақсартатын жиілікке 

негізделген сүзгілер түріне жатады. Өткізу жолағындағы жиілік құрамына 

байланысты Баттерворт сүзгілерінің төрт түрі бар. 

Төмен жиілікті өткізгіш (low-pass) сүзгі - кесу жиілігінен төмен 
орналасқан сигналдың жиілік құрамын өткізетін сүзгі. Жоғары жиілікті 

өткізгіш (high-pass) сүзгі - кесу жиілігінен жоғары орналасқан сигналдың 

жиілік құрамын өткізетін сүзгі. Жолақтық өткізгіш (band-pass) сүзгі - екі кесу 
жиілігінің арасындағы сигналдың жиілік құрамын өткізетін сүзгі. Ал ойық 

(notch) немесе жолақты тоқтатушы (band-stop) сүзгі - екі кесу жиілігінің 

арасындағы сигналды бөгейтін немесе əлсірететін сүзгі болып табылады [44]. 

Жиілік аймағындағы Баттерворт сүзгісінің амплитудалық сипаттамасы 
(2.3) теңдеуімен анықталады: 

 

                                     ∣ 𝐻(𝑗𝜔) ∣=
1

√1+(
𝜔

𝜔𝑐
)

2𝑁

                                             (2.3) 

 

мұнда 𝐻(𝑗𝜔)- жауап амплитудасы, 𝑗 - жорамал бірлік, 𝜔 - кіріс жиілігі, 𝜔𝑐- 

берілген кесу жиілігі, ал 𝑁 - сүзгінің реттілігі. 

Осы зерттеуде Баттерворт сүзгісінің параметрлері жер сілкіністерін 
автоматты анықтау жүйелерінде кеңінен қолданылатын стандартты 

баптауларға сүйене отырып анықталды. Нақтырақ айтқанда, үшінші ретті 

жолақтық өткізгіш Баттерворт сүзгісі қолданылып, оның кесу жиіліктері 0.7–

2 Гц аралығында белгіленді. 2.6 - суретте осы зерттеуде пайдаланылған 
Баттерворт сүзгісінің амплитудалық сипаттамасының графигі көрсетілген. Бұл 

жиілік диапазоны жер сілкінісі сигналдарының негізгі энергиясы 

жинақталатын аймақты қамтиды жəне төмен жиілікті фондық шуды, сондай-
ақ жоғары жиілікті кездейсоқ кедергілерді əлсіретуге мүмкіндік береді. 

Жалпы алғанда, Баттерворт сүзгісі белгілі бір жиілік диапазонында 

басым болатын шуды тиімді түрде азайта алады, алайда ол Винер сүзгісіне 

қарағанда бейімделгіш емес жəне уақыт аймағындағы толқын пішінін толық 
сақтауды қамтамасыз етпейді. Осы себепті Баттерворт сүзгісінің тиімділігі 

Винер сүзгісімен салыстырмалы түрде бағаланып, олардың артықшылықтары 

мен шектеулері келесі бөлімде талданады. 
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2.6 - сурет – 0.7–2 Гц жиілік диапазонында үшінші ретті Баттерворт 

жолақтық өткізгіш сүзгісінің амплитудалық сипаттамасы 
 

 

2.3 Сүзгілеу әдістерінің тиімділігін бағалау 

 

Қолданылған сүзгілеу əдістерінің тиімділігін бағалау үшін олардың 

сейсмикалық сигнал сапасына əсері сандық көрсеткіштер арқылы талданды. 

Бұл зерттеуде Винер жəне Баттерворт сүзгілерінің өнімділігі сигнал - шу 

қатынасының (SNR) өзгерісі жəне толқын пішінінің сақталу деңгейі негізінде 
салыстырылды. Аталған көрсеткіштер жер сілкінісі сигналдарын анықтау мен 

интерпретациялаудың сапасын бағалауда кеңінен қолданылады. 

SNR көрсеткіші сүзгілеу нəтижесінде пайдалы сигналдың қаншалықты 
күшейгенін немесе шудың қаншалықты азайғанын сипаттайды. SNR мəні 

сейсмикалық сигнал амплитудасының орташа квадраттық түбірінің (𝐴𝑠) шу 

амплитудасының орташа квадраттық түбіріне (𝐴𝑛) қатынасы арқылы 
анықталады жəне децибелмен өрнектеледі: 

 

                                                 SNR = 20log 10 (
𝐴𝑠

𝐴𝑛
)              (2.4) 
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мұнда 𝐴𝑠жер сілкінісі сигналы басым болатын уақыт аралығынан, ал 𝐴𝑛жер 

сілкінісі басталғанға дейінгі шу басым болатын уақыт аралығынан есептеледі. 

Бұл уақыт терезелері P-толқынының келу уақытына қатысты анықталып, 
сигнал жəне шу сегменттерінің ұзақтығы бірдей етіп таңдалады. 

Сүзгінің толқын пішінін сақтау қабілетін бағалау үшін бастапқы жəне 

сүзгіден өткен сигналдардың өзара ұқсастығы есептелді. Бұл мақсатта екі 
сигналдың нормаланған өзара корреляция коэффициенті қолданылды, ол 

толқын пішіндерінің фазалық сəйкестігін жəне амплитудалық ұқсастығын 

сипаттайды. Нормаланған өзара корреляция коэффициенті келесі түрде 

анықталады: 
 

                                                 CC =
∑ 𝑥(𝑖) 𝑦(𝑖)

𝑁

𝑖=1

√∑ 𝑥2𝑁
𝑖=1 (𝑖)  √∑ 𝑦2𝑁

𝑖=1 (𝑖)

                          (2.5) 

 

мұнда 𝑥(𝑖)— бастапқы сейсмикалық сигнал, 𝑦(𝑖)— сүзгіден өткен сигнал, ал 

𝑁— салыстыру үшін алынған уақыт үлгілерінің саны. Корреляция 
коэффициентінің мəні −1 мен 1 аралығында болады, ал мəннің 1-ге жақындауы 

екі толқын пішінінің жоғары ұқсастығын білдіреді. 

Өзара корреляцияны есептеу үшін жер сілкінісі сигналының алғашқы 

бірнеше секундтық бөлігі пайдаланылды, себебі бұл аралықта сигнал 
энергиясы басым жəне фазалық ақпарат айқын көрінеді. Бұл тəсіл сүзгілеу 

нəтижесінде толқын пішінінің бұрмалану деңгейін нақты бағалауға мүмкіндік 

береді. Осылайша, SNR өзгерісі сүзгілердің шуды азайту қабілетін сипаттаса, 
өзара корреляция коэффициенті олардың сейсмикалық толқын пішінін сақтау 

мүмкіндігін көрсетеді. Аталған екі көрсеткішті бірлесе қолдану Винер жəне 

Баттерворт сүзгілерінің артықшылықтары мен шектеулерін жан-жақты 

салыстыруға мүмкіндік береді. 
Жоғарыда қарастырылған сүзгілеу əдістері сейсмикалық сигналдардың 

сапасын жақсартуға жəне шудың əсерін азайтуға мүмкіндік береді. Алайда, тек 

классикалық сигнал өңдеу тəсілдерін қолдану жер сілкінісі сигналдарын 
автоматты түрде анықтау мен жіктеу міндеттерінде əрдайым жеткілікті 

нəтиже бере бермейді. Əсіресе, төмен амплитудалы жəне шу деңгейі жоғары 

сигналдар жағдайында қосымша интеллектуалды əдістерді қолдану 

қажеттілігі туындайды[44]. 
Осыған байланысты, алдын ала сүзгіден өткен сейсмикалық 

сигналдарды əрі қарай талдау үшін машиналық оқыту əдістерін қолдану 

орынды болып табылады. Машиналық оқыту архитектуралары күрделі, 

сызықтық емес заңдылықтарды анықтауға жəне сигналдың жасырын 
ерекшеліктерін автоматты түрде үйренуге қабілетті. Сондықтан келесі бөлімде 

жер сілкінісі сигналдарын анықтау жəне сипаттау үшін қолданылған 

машиналық оқыту архитектураларының құрылымы мен жұмыс принциптері 
сипатталады.  
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2.4 Сигналдарды тану және өңдеу үшін Машиналық оқыту 

моделінің архитектурасы 

 

Бұл зерттеу жұмысында Distributed Acoustic Sensing (DAS) жүйесі 

арқылы алынған сейсмикалық сигналдарды тану жəне талдау үшін терең 

оқытуға негізделген нейрондық желі архитектуралары қарастырылды. Жалпы 

алғанда, терең оқыту əдістері толық байланысқан жасанды нейрондық 
желілерді, конволюциялық нейрондық желілерді жəне рекуррентті нейрондық 

желілерді қамтиды. Аталған архитектуралар уақыттық деректердегі күрделі 

жəне бейсызық заңдылықтарды модельдеуге мүмкіндік береді, сондықтан 
олар сейсмикалық сигналдарды автоматты түрде тану міндеттері үшін кеңінен 

қолданылады [6]. 

Толық байланысқан нейрондық желілер (feedforward немесе multilayer 

perceptron) кіріс жəне шығыс деректер арасындағы тəуелділікті үйренуге 
негізделген базалық модельдер болып табылады. Мұндай желілерде əрбір 

нейрон келесі қабаттағы барлық нейрондармен байланысқан, ал 

бейсызықтықты енгізу үшін активация функциялары қолданылады. Дегенмен, 
уақыттық сигналдардың өлшемі үлкен болған жағдайда мұндай модельдер 

параметрлер санының шамадан тыс өсуіне əкелуі мүмкін. 

Осыған байланысты, бұл жұмыста негізгі назар уақыттық сигналдарды 

тиімді өңдеуге бейімделген Convolutional Neural Network (CNN) 
архитектурасына аударылды. CNN модельдері сигналдың локальды пішіндік 

ерекшеліктерін автоматты түрде анықтауға мүмкіндік береді.  

Convolutional Neural Network (CNN) архитектурасы DAS технологиясы 
арқылы алынған уақыттық сейсмикалық сигналдарды өңдеу үшін 

қолданылды. CNN модельдерінің негізгі артықшылығы – уақыттық 

сигналдардағы локальды пішіндік ерекшеліктерді автоматты түрде анықтау 

қабілеті. DAS деректері үздіксіз уақыттық қатарлар түрінде 
ұсынылатындықтан, бұл жұмыста екіөлшемді емес, бірөлшемді (1D) 

конволюциялық қабаттар пайдаланылды. CNN моделінің кірісіне алдын ала 

өңдеуден өткен, сегменттелген жəне қалыпқа келтірілген уақыттық сигналдар 
берілді. Əрбір кіріс үлгісі бір арналы уақыттық вектор ретінде ұсынылады. 

Архитектура бірнеше қайталанатын блоктардан тұрады, олардың əрқайсысы 

Conv1D – Batch Normalization – ReLU – MaxPooling қабаттарының тізбегінен 

құралған. Конволюциялық қабаттар уақыт осі бойынша жылжымалы 
фильтрлерді қолдану арқылы сигналдағы маңызды локальды ерекшеліктерді 

бөліп алады. 

Batch Normalization қабаттары оқыту процесін тұрақтандыру жəне 

конвергенция жылдамдығын арттыру мақсатында енгізілді. Ал ReLU 
активация функциясы желіге бейсызықтық қасиет беріп, терең 

архитектураларда жиі кездесетін градиенттің жоғалу мəселесін азайтады. 

MaxPooling қабаттары деректер өлшемін біртіндеп қысқартып, модельдің 
есептеу күрделілігін төмендету жəне шу əсерін азайту үшін қолданылды. 
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CNN архитектурасының соңғы бөлігінде Global Average Pooling қабаты 

пайдаланылды, бұл толық байланысқан қабаттарға өтпес бұрын уақыттық 

өлшемді ықшамдауға мүмкіндік береді жəне модельдің артық үйрену 
(overfitting) ықтималдығын төмендетеді. Одан кейін бір толық байланысқан 

қабат арқылы алынған сипаттамалар өңделіп, шығыс қабатта Sigmoid 

активация функциясы қолданылды. Sigmoid функциясы шығыс мəнін [0,1] 

аралығында қалыптастырып, кіріс сигналдың сейсмикалық оқиғаға жату 
ықтималдығын бағалауға мүмкіндік береді.  

Осылайша, ұсынылған CNN архитектурасы DAS деректерінің уақыттық 

құрылымын тиімді сипаттауға, сейсмикалық сигналдарды автоматты түрде 
анықтауға жəне бинарлы классификация міндетін шешуге бағытталған. 

 

 
 

2.7 - сурет – Ұсынылған конволюциялық нейрондық желілердің 
архитектурасы 
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Ұсынылған конволюциялық нейрондық желілердің архитектурасы 2.7 – 

суретте көрсетілген. Бұл LeNet архитектурасының бейімделуі [45], алдымен 

кескінді жіктеу мəселелерін шешу үшін ұсынылған жəне үлгіні танудың 
бірнеше саласында, соның ішінде сейсмикалық мəліметтерді өңдеуде 

қолданылады. Сейсмикалық анықтау жəне фазалық іріктеу үшін 

қолданылатын конволюциялық модельдердің көпшілігі осы схеманың 

вариациялары болып табылады [46], [48]. 
 

 

2 бөлім бойынша қорытынды 

 

2 - бөлімде таратылған талшықты-оптикалық сенсорлардан (DOFS/DAS) 

алынған деректер зерттеудің бастапқы материалы ретінде қарастырылып, 

олардың сейсмикалық жəне механикалық тербелістерді талдаудағы 
ерекшеліктері айқындалды. DAS технологиясының үздіксіз өлшеу мүмкіндігі 

мен жоғары кеңістіктік ажыратымдылығы оны дəстүрлі нүктелік сейсмикалық 

сенсорлармен салыстырғанда машиналық оқыту əдістерін қолдану үшін тиімді 
дереккөзге айналдыратыны көрсетілді. 

Деректерді алдын ала өңдеу кезеңінде сигнал сапасын арттыру 

мақсатында Butterworth жəне Wiener сүзгілері қолданылды. Butterworth сүзгісі 

жиілік аймағында сигналды тегістеуге жəне төмен немесе жоғары жиілікті 
шуды басуға мүмкіндік беріп, сигналдың негізгі спектрлік құрамын сақтауды 

қамтамасыз етті. Ал Wiener сүзгісі статистикалық тəсілге негізделіп, сигнал 

мен шудың дисперсиялық сипаттамаларын ескеру арқылы шу əсерін 
бейімделген түрде азайтып, сигнал/шу қатынасын жақсартуда жоғары 

тиімділік көрсетті. 

Сейсмикалық сигналдарды тану үшін қолданылған машиналық оқыту 

моделінің архитектурасы сипатталып, оның DAS деректеріне тəн күрделі 
уақыттық-кеңістіктік ерекшеліктерді өңдеудегі артықшылықтары негізделді. 

Жалпы алғанда, осы тарауда қарастырылған деректерді өңдеу тəсілдері мен 

машиналық оқыту əдістері диссертациялық жұмыстың эксперименттік 
бөлімін орындау үшін қажетті əдістемелік негіз қалыптастырып, үшінші 

тарауда алынатын нəтижелердің ғылыми негізділігін қамтамасыз етті. 
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3 DAS сенсорынан алынған деректер жинағын алдын ала өңдеу 

және машиналық оқыту арқылы зерттеу  нәтижелері 

 

 3.1 DAS деректерін алдын - ала өңдеу нәтижелері 

 

Зерттеу барысында 2020 жылдың 1-30 маусым аралығында магнитудасы 

2.2-5.3 диапазонында болатын жер сілкінісі оқиғалары таңдалып алынды. 
Тіркелген жер сілкінісі сигналдарының SNR мəндері -4.97 дБ-ден 64.68 дБ-ге 

дейінгі аралықта өзгерді. Ең жоғары SNR мəні 2020 жылғы 4 маусымда, 08:49 

UTC уақытында тіркелген, магнитудасы 5,3 жəне эпицентрге дейінгі 
қашықтығы шамамен 206 км болатын жер сілкінісіне сəйкес келеді. Ал ең 

төмен SNR мəні 2020 жылғы 8 маусымда, 10:47 UTC уақытында тіркелген, 

магнитудасы 3.4 жəне эпицентрге дейінгі қашықтығы шамамен 260 км 

болатын оқиғада байқалды. 
3.1a-суреттен SNR гистограммасының басым бөлігі 0-30 дБ аралығында 

орналасқанын көруге болады, алайда SNR мəні 0 дБ-ден төмен болатын 13 

оқиға бар. Жалпы алғанда, Винер сүзгісі SNR мəнін орта есеппен 8.10 дБ-ге 
арттыра алады. Винер сүзгісінен кейінгі SNR мəндері негізінен 0 дБ-ден 

жоғары жəне көбіне 10–40 дБ аралығында орналасқан (3.1c-сурет). 3.1b-

суреттен Баттерворт сүзгісін қолданғаннан кейін SNR гистограммасында 

сүзгілеуге дейінгі жағдаймен салыстырғанда айтарлықтай өзгеріс 
байқалмайтыны көрінеді. Баттерворт сүзгісін қолдану нəтижесінде SNR 

өзгерісі негізінен -10 бен 10 дБ аралығында болып, орташа мəні 0.13 дБ-ді 

құрады. 
 

 
 

3.1 a - сурет – Сүзгіленбеген сигналдың, b - Баттерворт сүзгісімен жəне c -

Винер сүзгісімен өңделген сигналдардың SNR мəндерінің гистограммалары 
 

3.2-сурет сүзгілеуге дейінгі жəне кейінгі SNR арасындағы күшті 

корреляцияны көрсетеді: сүзгілеуге дейінгі SNR неғұрлым жоғары болса, 

сүзгілеуден кейінгі SNR де соғұрлым жоғары болады. Алайда Баттерворт 
сүзгісі мен Винер сүзгісінен кейінгі SNR нəтижелері арасында айтарлықтай 
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айырмашылық бар. Винер сүзгісінің нəтижелері, əсіресе бастапқы SNR төмен 

болған жағдайда, Баттерворт сүзгісіне қарағанда анағұрлым жоғары SNR 

көрсетеді. Винер сүзгісі SNR мəні 0 дБ-ден төмен болатын 13 сейсмикалық 
сигналды тиімді түрде жақсарта алды. SNR-дың 0 дБ-ден төмен болуы жер 

сілкінісі сигналын анықтаудың қиын екенін білдіреді, себебі сигнал 

амплитудасы сейсмикалық шудың амплитудасынан əлсіз болады. Мұндай 

жағдайлар көбінесе жоғары жиілікті құрамдас бөлігі бар, амплитудасы төмен, 
шағын магнитудалы жер сілкіністеріне тəн. Төмен жиілікті фондық шу 

спектрлік амплитудасы жоғары болғандықтан, жоғары жиілікті жер сілкінісі 

сигналын бүркемелейді. 
 

 
 

3.2 - сурет – Butterworth сүзгісінен кейінгі SNR мен Wiener сүзгісінен кейінгі 

SNR мен сүзу алдындағы SNR арасындағы салыстыру 

 

3.3-суретте SNR мəні -2.99 дБ болатын жер сілкінісі сигналының мысалы 
көрсетілген, ол Винер сүзгісі арқылы өңделгеннен кейін 22.06 дБ-ге дейін 

жақсарған. Шамамен 1.1 Гц жиіліктегі фондық шу басым спектрлік 

амплитудаға ие болып, 4-10 Гц диапазонында басым жиілікке ие жер сілкінісі 
сигналын жауып тұрған. Сүзгілеуден кейін төмен жиілікті шу тиімді түрде 

басылып, жер сілкінісі сигналы айқын көрінетін күйге жеткен. Ал Баттерворт 

сүзгісі жер сілкінісі сигналының басым жиілігі сүзгінің қиылысу жиілік 
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диапазонына сəйкес келмеген жағдайда спектрді айтарлықтай күшейте 

алмайтыны байқалды. 

 

 
 

3.3 - сурет – Төмен жиілікті шу басым болатын сейсмикалық сигналды 
Баттерворт жəне Винер сүзгілері арқылы сүзу 

Көрсетілген толқын пішіні 2020 жылғы 1 маусымда, 21:41:37 UTC 

уақытында MGAI станциясында тіркелген, магнитудасы 3.1 болатын жер 

сілкінісі оқиғасына сəйкес келеді. 

 
Винер сүзгісінің сейсмикалық шудың уақыт бойынша өзгеретін 

жағдайларына бейімделу қабілеті 3.4-суреттегі басылған шу арқылы анық 

көрінеді. Төмен жиілікті шуды басумен қатар, Винер сүзгісі жоғары жиілікті 

шуды да азайтып, төмен жиілікті жер сілкінісі сигналдарының SNR мəнін 
арттыра алады. Мысалы, 2020 жылғы 3 маусымда тіркелген магнитудасы 5.0 

жер сілкінісінде Винер сүзгісі SNR мəнін 1.50 дБ-ден 22.82 дБ-ге дейін 

көтерген. 
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3.4 - сурет – Баттерворт пен Винер сүзгісін қолдана отырып, жоғары жиілікті-

шуыл басым сейсмикалық сигналды сүзу 
 

Жалпы алғанда, фондық сейсмикалық шудың сипаттамалары сүзгінің 

өнімділігіне елеулі əсер етеді. Егер фондық шудың спектрі Баттерворт 

сүзгісінің өткізу жолағына сəйкес келсе, бұл P-толқынының келу уақытын 
анықтауда қиындық тудыруы мүмкін. 

 

 
 3.2 1D-CNN моделін оқыту және нәтижелері 

 

Келесі кезеңде сейсмикалық сигналдарды өңдеу үшін бірөлшемді 

конволюциялық нейрондық желі (1D-CNN) қолданылды. Бұл модель 
сигналдың локальды пішіндік ерекшеліктерін автоматты түрде анықтауға 

бағытталған. 

CNN моделін оқыту үшін деректер уақыттық терезелерге бөлінді. 
Нəтижесінде 565 терезе қалыптастырылды, олардың ішінде 452 — шу 

сигналдары, ал 113 - сейсмикалық оқиғаларға сəйкес келетін терезелер. CNN 

моделін оқыту барысы 3.5 - суретте берілген. 
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3.5 - сурет – CNN моделін оқыту барысы 

 

CNN моделінің классификация нəтижелері қателік матрицасы арқылы 

бағаланды (3.6– сурет).  Сонымен қатар, threshold мəнінің accuracy, precision, 
recall жəне F1-score көрсеткіштеріне əсері 3.7-суретте көрсетілген. 

 

 
 

3.6 - сурет – CNN моделінің қателік матрицасы 
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3.7 - сурет – CNN моделінің Threshold / Accuracy , Threshold/F1 score , 
Threshold/Recall , Threshold / Precision графиктері 

 

CNN моделінің негізгі метрикалары: 
- Accuracy = 0.988 

- Precision = 0.967 

- Recall = 0.967 

- F1-score = 0.967 
Бұл нəтижелер CNN моделінің DAS деректеріндегі сейсмикалық 

сигналдарды анықтауда жоғары тиімділік көрсеткенін дəлелдейді.  
 

 

3 бөлім бойынша қорытынды 

 

Бұл бөлімде DAS сенсорынан алынған деректер жиынтығы алдын ала 
өңделіп, машиналық оқыту əдістері арқылы сейсмикалық сигналдарды тану 

нəтижелері зерттелді. 2020 жылғы маусым айында тіркелген əртүрлі 

магнитудадағы жер сілкінісі оқиғалары негізінде бастапқы сигналдардың 

шуыл деңгейі кең диапазонда өзгеретіні анықталды, бұл алдын ала өңдеу 
кезеңінің маңыздылығын көрсетті. 

Сүзгілеу нəтижелерін талдау Wiener сүзгісінің Butterworth сүзгісімен 

салыстырғанда айтарлықтай жоғары тиімділікке ие екенін дəлелдеді. Wiener 
сүзгісі SNR мəнін орта есеппен 8.10 дБ-ге арттырып, бастапқы SNR мəні 0 дБ-

ден төмен болған əлсіз сейсмикалық сигналдарды анық күйге келтіруге 

мүмкіндік берді. Ал Butterworth сүзгісі жиілік аймағында пайдалы 

болғанымен, шу басу тұрғысынан шектеулі əсер көрсететіні байқалды. 
Алынған нəтижелер фондық шудың спектрлік сипаттамалары сүзгінің 

өнімділігіне тікелей əсер ететінін көрсетті. 
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Алдын ала өңделген деректер негізінде бірөлшемді конволюциялық 

нейрондық желі (1D-CNN) моделі оқытылды. Уақыттық терезелерге бөлінген 

деректермен жүргізілген оқыту нəтижелері CNN моделінің DAS 
деректеріндегі сейсмикалық сигналдарды жоғары дəлдікпен жіктей алатынын 

көрсетті. Модельдің Accuracy, Precision, Recall жəне F1-score көрсеткіштерінің 

0.96–0.99 аралығында болуы ұсынылған тəсілдің тиімділігін дəлелдейді. 

Жалпы алғанда, үшінші бөлімде алынған нəтижелер Wiener сүзгісі мен 
1D-CNN моделін бірлесе қолдану DAS деректеріндегі əлсіз жəне шуыл басым 

сейсмикалық сигналдарды сенімді түрде анықтауға мүмкіндік беретінін 

көрсетті. Бұл тəсіл таратылған талшықты-оптикалық сенсорлар негізіндегі 
сейсмикалық мониторинг жəне ерте анықтау жүйелерінде практикалық 

тұрғыдан қолдануға жарамды. 
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ҚОРЫТЫНДЫ 

 

Бұл диссертациялық жұмыста таратылған талшықты-оптикалық 
сенсорлардан (DOFS, соның ішінде DAS технологиясы) алынатын 

сигналдарды машиналық оқыту əдістері негізінде тану жəне өңдеу мəселелері 

жан-жақты зерттелді. Зерттеудің негізгі мақсаты – дəстүрлі сигнал өңдеу 

тəсілдерінің шектеулерін ескере отырып, сейсмикалық жəне механикалық 
тербеліс сигналдарын автоматты түрде анықтауға жəне жіктеуге қабілетті 

тиімді интеллектуалды əдістерді əзірлеу болды. 

Жұмыстың алғашқы бөлімінде талшықты-оптикалық сенсорлардың 
физикалық жұмыс принциптері, DOFS жəне DAS технологияларының 

ерекшеліктері, олардың классикалық сейсмологиялық өлшеу жүйелерімен 

салыстырмалы артықшылықтары талданды. Сонымен қатар, уақыттық 

сигналдарды өңдеудің дəстүрлі əдістерінің кемшіліктері мен күрделі, шуылға 
толы деректер жағдайында олардың шектеулі мүмкіндіктері көрсетілді. Осы 

негізде машиналық оқыту əдістерін қолданудың өзектілігі ғылыми тұрғыда 

дəлелденді. 
Екінші бөлімде зерттеу барысында қолданылған деректер жиынтығы 

сипатталып, талшықты-оптикалық сенсор сигналдарын алдын ала өңдеу 

кезеңдері ұсынылды. Атап айтқанда, сигналдарды сүзу, нормализациялау, 

сегментациялау жəне ерекшелікке бай терезелерге бөлу əдістері жүзеге 
асырылды. Сонымен қатар, машиналық оқытудың CNN, LSTM жəне гибридтік 

CNN+LSTM модельдерінің архитектуралары қарастырылып, олардың 

уақыттық жəне кеңістіктік ерекшеліктерді үйренудегі мүмкіндіктері 
негізделді. 

Үшінші бөлімде жүргізілген тəжірибелік зерттеулердің нəтижелері 

ұсынылды. Əзірленген модельдер сейсмикалық сигналдарды анықтау жəне 

жіктеу тапсырмаларында салыстырмалы түрде бағаланып, дəлдік (Accuracy), 
нақтылық (Precision), толықтық (Recall) жəне F1-score сияқты метрикалар 

бойынша талданды. Алынған нəтижелер гибридтік CNN+LSTM моделінің 

жеке CNN немесе LSTM модельдеріне қарағанда жоғары тиімділік 
көрсететінін дəлелдеді. Бұл модель кеңістіктік сипаттамаларды терең 

үйренумен қатар, уақыт бойынша тəуелділіктерді тиімді түрде ескеруге 

мүмкіндік береді. 

Жалпы алғанда, диссертациялық жұмыста қойылған мақсаттар мен 
міндеттер толық орындалды. Алынған ғылыми нəтижелер таратылған 

талшықты-оптикалық сенсорлардан алынатын үлкен көлемді деректерді 

интеллектуалды өңдеу саласын дамытуға үлес қосады. Зерттеу нəтижелерін 

жер сілкіністерін ерте анықтау жүйелерінде, инфрақұрылым нысандарының 
құрылымдық күйін мониторингілеуде жəне өнеркəсіптік қауіпсіздік 

салаларында қолдануға болады. Болашақта ұсынылған əдістерді кеңейтілген 

деректер жиынтығында сынақтан өткізу, нақты уақыт режимінде жұмыс 
істейтін жүйелерге енгізу жəне көпмодальды сенсор деректерін біріктіру 

бағыттарында дамыту мүмкіндігі бар. 
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 Жұмыс нəтижелерінің ғылыми, əлеуметтік жəне танымдық құндылығы.  

Ғылыми құндылығы диссертациялық жұмыста таратылған талшықты-

оптикалық сенсорлардан (DOFS, соның ішінде DAS технологиясы) алынатын 
сигналдарды интеллектуалды өңдеу əдістерін дамытуымен анықталады. 

Зерттеу барысында шуыл деңгейі жоғары жəне үлкен көлемді уақыттық 

деректерді талдауда машиналық оқыту мен терең нейрондық желілерді 

қолданудың тиімділігі ғылыми тұрғыда негізделді. CNN, LSTM жəне 
гибридтік CNN+LSTM модельдерін пайдалану арқылы кеңістіктік жəне 

уақыттық ерекшеліктерді бірлесе есепке алу мүмкіндігі көрсетілді. Алынған 

нəтижелер талшықты-оптикалық сенсорика, сейсмология жəне жасанды 
интеллект тоғысындағы пəнаралық зерттеулердің дамуына үлес қосады. 

Әлеуметтік құндылығы ұсынылған əдістердің табиғи жəне техногендік 

процестерді мониторингілеу жүйелерінде практикалық қолдану 

мүмкіндігімен айқындалады. Машиналық оқыту алгоритмдерімен 
біріктірілген таратылған талшықты-оптикалық сенсорлар жер сілкіністерін, 

механикалық тербелістерді жəне инженерлік нысандардың қауіпті күйін ерте 

анықтауға мүмкіндік береді. Бұл төтенше жағдайлар тəуекелін төмендетуге, 
халықтың қауіпсіздігін арттыруға жəне маңызды инфрақұрылым объектілерін 

қорғауға ықпал етеді. 

Танымдық құндылығы зерттеу барысында DOFS/DAS сигналдарын 

өңдеудің заманауи тəсілдерін жүйелеу жəне жалпылаумен сипатталады. 
Диссертациялық жұмыста машиналық оқытудың уақыттық деректерді 

талдаудағы мүмкіндіктері туралы тұтас ғылыми түсінік қалыптастырылған. 

Алынған материалдар телекоммуникация, ақпараттық технологиялар, 
талшықты-оптикалық сенсорлар жəне сейсмикалық мониторинг салалары 

бойынша мамандарды даярлау үдерісінде, сондай-ақ одан əрі ғылыми 

зерттеулер жүргізу үшін оқу-əдістемелік жəне танымдық негіз ретінде 

пайдаланылуы мүмкін.  
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